4.6 Article

Involvement of gecko SNAP25b in spinal cord regeneration by promoting outgrowth and elongation of neurites

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biocel.2012.09.011

关键词

Gecko; SNAP25; Neurons; Regeneration; CNS

资金

  1. National Natural Science Foundation of China [31071874, 30970996, 31171405]
  2. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  3. Jiangsu Education Department [09KJA180005, 10KJA180041]

向作者/读者索取更多资源

SNARE complex mediates cellular membrane fusion events essential for neurotransmitter release and synaptogenesis. SNAP25, a member of the SNARE proteins, plays critical roles during the development of the central nervous system via regulation by alternative splicing and protein kinase phosphorylation. To date, little information is available regarding the protein in the spinal cord regeneration, especially for the postnatal highly expressed isoform SNAP25b. In the present study, we characterized gecko SNAP25b, which shared high identity with those of other vertebrates. Expression of gecko SNAP25b was temporally upregulated in both neurons of spinal cord and forming ependymal tube following tail amputation, coinciding with the occurrence of regenerate re-innervation. Overexpression of gecko wild type SNAP25b in the SH-SY5Y and undifferentiated PC12 cells promoted the elongation and outgrowth of neurites, while mutant constructs at Serine(187) resulted in differential effects for which S187A had a promoting role. Knockdown of endogenous SNAP25b affected the formation of neurites, which could be rescued by overexpression of SNAP25b. FM1-43 staining revealed that transfection of S187E mutant construct reduced the recruitment of vesicles. In addition, transfection of gecko SNAP25b in the astrocyte, which is absent from neuronal specific VAMP2, was capable of enhancing process elongation, indicating a potential for various alternative protein combinations. Taken together, our data suggest that gecko SNAP25b is involved in spinal cord regeneration by promoting outgrowth and elongation of neurites in a more extensive protein binding manner. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据