4.3 Article

Effect of the front and rear weight distribution ratio of a formula car during maximum-speed cornering on a circuit

期刊

出版社

KOREAN SOC AUTOMOTIVE ENGINEERS
DOI: 10.1007/s12239-008-0037-2

关键词

formula car; maneuverability; vehicle dynamics; stability; weight distribution

向作者/读者索取更多资源

Because Formula cars are lighter than ordinary cars, the optimal settings for this type of car are thought to be different from those of a ordinary car. The front and rear weight distribution ratio of a vehicle is an important parameter that exerts a significant influence on critical cornering. The tendency of a ordinary car to under-steer during critical cornering is determined by the front and rear weight distribution ratio of the vehicle. Specifically, when the front of an ordinary FR (front-engine, rear wheel drive) vehicle is slightly heavier than the rear, the car tends to understeer during critical cornering. However, the optimal weight distribution ratio for critical cornering is not obvious for a formula car because of its lightness. This observation was investigated using a driving course similar to a real driving course to perform a maximum speed cornering simulations. It was found that a front to rear weight distribution ratio of 40:60 resulted in the fastest lap time. This ratio also gave the best results in the maximum-speed driving experiment performed using a driving simulator. Moreover, the maximum lateral acceleration during turning, the driving force, and the load movement of the inside and outside wheels was calculated using experimental driving force data and the concept of a tire friction circle. As a result, driving mechanics have been determined for a vehicle having a front/rear weight distribution ratio of 40:60 while traveling at maximum speed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据