4.5 Article

Application of Thin-Film Manufacturing Technologies to Solid Oxide Fuel Cells and Gas Separation Membranes

期刊

出版社

WILEY
DOI: 10.1111/ijac.12040

关键词

-

向作者/读者索取更多资源

The implementation of thin-film technologies in energy-related applications, such as special fuel cells and gas separation membranes for low-emission power plants, is essential in terms of enhancing the functionality, reducing operating temperatures, and increasing lifetime. Introducing thin electrolyte layers into solid oxide fuel cells (SOFCs) decreases the internal cell resistance and thus drastically enhances the power density. This supports the goal of reducing the operation temperature from similar to 800 degrees C to temperatures below 700 degrees C. As the operation temperature is lowered, the temperature-activated degradation processes are slowed down, and 40,000h of operation becomes feasible. Reducing the thickness of the gas separation membranes also reduces internal losses, and therefore, the rate-limiting steps within the layer. Thinner functional layers possess higher permeabilities but also involve a risk of more layer defects. This also holds for the fuel cells. Thus, the manufacturing of the supports and the intermediate layers is also very important. The paper gives an overview of the application of thin-film technologies to SOFCs and gas separation membranes and highlights the efforts to date. Examples include SOFC stacks operated stably for in excess of 40,000h and submicron-sized membranes with high permeability and good separation factors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据