4.6 Article

A fuzzy bi-objective mixed-integer programming method for solving supply chain network design problems under ambiguous and vague conditions

期刊

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00170-014-5891-7

关键词

Supply chain network; Mathematical programming; Ambiguity; Vagueness; Fuzzy sets; Fuzzy preference relations

向作者/读者索取更多资源

Supply chain (SC) network design problems are complex problems with multi-layer levels and dynamic relationships which involve a considerable amount of uncertainty concerning customer demand, facility capacity, or lead times, among others. A large number of optimization methods (i.e., fuzzy mathematical programming, stochastic programming, and interval mathematical programming) have been proposed to cope with the uncertainties in SC network design problems. We propose a fuzzy bi-objective mixed-integer linear programming (MILP) model to enhance the material flow in dual-channel, multi-item, and multi-objective SCs with multiple echelons under both ambiguous and vague conditions, concurrently. We use a computationally efficient ranking method to resolve the ambiguity of the parameters and propose two methods for resolving the vagueness of the objective functions in the proposed fuzzy MILP model. The preferences of the decision makers (DMs) on the priority of the fuzzy goals are represented with crisp importance weights in the first method and fuzzy preference relations in the second method. The fuzzy preference relations in the second method present a unique practical application of type-II fuzzy sets. The performance of the two methods is compared using comprehensive statistical analysis. The results show the perspicuous dominance of the method which uses fuzzy preference relations (i.e., type-II fuzzy sets). We present a case study in the food industry to demonstrate the applicability of the proposed model and exhibit the efficacy of the procedures and algorithms. To the best of our knowledge, a concurrent interpretation of both ambiguous and vague uncertainties, which is applicable to many real-life problems, is novel and has not been reported in the literature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据