4.6 Article

Prediction of surface roughness in abrasive waterjet machining of particle reinforced MMCs using genetic expression programming

期刊

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00170-010-3122-4

关键词

Metal matrix composites; Abrasive water jet machining; Surface roughness; Modeling; Genetic expression programming

向作者/读者索取更多资源

Machining of particle-reinforced metal matrix composites has been considerably difficult due to the extremely abrasive nature of the reinforcements that causes rapid tool wear and high machining cost. Abrasive water jet (AWJ) machining has proven to be a viable technique to machine such materials compared to conventional machining processes. The present study is focused on the surface roughness of AWJ cut surfaces and genetic expression programming (GEP) was proposed to predict surface roughness in AWJ machining of 7075 Al alloy composites reinforced with Al2O3 particles. In the development predictive models, characteristics of materials such as size and weight fraction of reinforcement particles, and depth of cut were considered as model variables. The training and testing data sets were obtained from the well-established machining test results. The weight fraction of particle, size of particle, and depth of cut were used as independent input variables, while arithmetic mean of surface roughness, maximum roughness of profile height, and mean spacing of profile irregularity as dependent output variables. Different models for the output variables were predicted on the basis of training data set using GEP and accuracy of the best model was proved with testing data set. The test results showed that output variables increased with increasing input variables. The predicted results were compared with experimental results and found to be in good agreement with the experimentally observed ones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据