4.6 Article

Solving flow shop scheduling problems by quantum differential evolutionary algorithm

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00170-009-2438-4

关键词

Permutation flow shop scheduling; Quantum-inspired evolutionary algorithm; Differential evolution; Variable neighborhood search

向作者/读者索取更多资源

This paper proposed a novel quantum differential evolutionary algorithm (QDEA) based on the basic quantum-inspired evolutionary algorithm (QEA) for permutation flow shop scheduling problem (PFSP). In this QDEA, the quantum chromosomes are encoded and decoded by using the quantum rotating angle and a simple strategy named largest rotating angle value rule to determine job sequence based on job's quantum information is proposed for the representation of PFSP, firstly. Then, we merge the advantages of differential evolution strategy, variable neighborhood search and QEA by adopting the differential evolution to perform the updating of quantum gate and variable neighborhood search to raise the performance of the local search. We adopted QDEA to minimize the makespan, total flowtime and the maximum lateness of jobs and make the simulations. The results and comparisons with other algorithms based on famous benchmarks demonstrated the effectiveness of the proposed QDEA. Another contribution of this paper is to report new absolute values of total flowtime and maximum lateness for various benchmark problem sets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据