4.6 Article

Uncertainty quantification in homogenization of heterogeneous microstructures modeled by XFEM

出版社

WILEY
DOI: 10.1002/nme.3174

关键词

XFEM; inclusions; homogenization; Monte Carlo simulations; elliptical inclusions

向作者/读者索取更多资源

An extended finite element method (XFEM) coupled with a Monte Carlo approach is proposed to quantify the uncertainty in the homogenized effective elastic properties of multiphase materials. The methodology allows for an arbitrary number, aspect ratio, location and orientation of elliptic inclusions within a matrix, without the need for fine meshes in the vicinity of tightly packed inclusions and especially without the need to remesh for every different generated realization of the microstructure. Moreover, the number of degrees of freedom in the enriched elements is dynamically reallocated for each Monte Carlo sample run based on the given volume fraction. The main advantage of the proposed XFEM-based methodology is a major reduction in the computational effort in extensive Monte Carlo simulations compared with the standard FEM approach. Monte Carlo and XFEM appear to work extremely efficiently together. The Monte Carlo approach allows for the modeling of the size, aspect ratios, orientations, and spatial distribution of the elliptical inclusions as random variables with any prescribed probability distributions. Numerical results are presented and the uncertainty of the homogenized elastic properties is discussed. Copyright (C) 2011 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据