4.6 Article

Quasi-static crack propagation in plane and plate structures using set-valued traction-separation laws

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/nme.2182

关键词

crack propagation; cohesive traction-separation law; complementarity; plane problems; plates

向作者/读者索取更多资源

We introduce a numerical technique to model set-valued traction-separation laws in plate bending and also plane crack propagation problems. By using of recent developments in thin (Kirchhoff-Love) shell models and the extended finite element method, a complete and accurate algorithm for the cohesive law is presented and is used to determine the crack path. The cohesive law includes softening and unloading to origin, adhesion and contact. Pure debonding and contact are obtained as particular (degenerate) cases. A smooth root-finding algorithm (based on the trust-region method) is adopted. A step-driven algorithm is described with a smoothed law which can be made arbitrarily close to the exact non-smooth law. In the examples shown the results were found to be step-size insensitive and accurate. In addition, the method provides the crack advance law, extracted from the cohesive law and the absence of stress singularity at the tip. Copyright (C) 2007 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据