4.4 Article

A computational fluid dynamics study on hemodynamics for different locations of the distal anastomosis of a bypass nearby a collateral vessel in the femoropopliteal area

出版社

WILEY
DOI: 10.1002/cnm.2656

关键词

computational fluid dynamics (CFD); hemodynamics; atherosclerosis; wall shear stress (WSS); oscillation index (OSI); particle image velocimetry (PIV)

向作者/读者索取更多资源

Revascularization of the femoropopliteal sector is often performed by the placement of a bypass. In this paper, we have studied the effects of hemodynamics on patency of the bypass for different positions of the distal anastomosis close to a collateral artery. Computational fluid dynamics (CFD) are used for this study. The cardiac cycle-averaged wall shear stress ((WSS) over bar) and oscillation index (OSI) have been analyzed. Low (WSS) over bar and high OSI may increase the risk of intimal hyperplasia (IH), which may reduce bypass patency. From the CFD simulations, spots of low (WSS) over bar and high OSI are found within and near the entrance of the collateral artery, near the suture line, at the floor, toe, and heel. We regarded flow ratios of 20:80 and of 35:65. It is found that for the high flow ratio anastomosis located proximal to the collateral artery is clearly more advantageous. However for the low flow ratio anastomosis located distal to the collateral artery seems to be slightly more advantageous, the results are less conclusive. One of the studied flow geometries has been validated by in vitro experiments using a time resolved particle image velocimetry technique. Velocity fields from these experiments are in good agreement with the CFD results. Copyright (c) 2014 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据