4.7 Article

Laminar forced convection flow over a backward facing step using nanofluids

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.icheatmasstransfer.2010.06.007

关键词

Forced convection; Backward facing step; Heat transfer enhancement; Nanofluids; Recirculation flow

向作者/读者索取更多资源

Laminar forced convection flow of nanofluids over a 2D horizontal backward facing step placed in a duct is numerically investigated using a finite volume method. A 5% volume fraction of nanoparticles is dispersed in a base fluid besides using various types of nanoparticles such as Au, Ag, Al2O3, Cu, CuO, diamond, SiO2, and TiO2. The duct has a step height of 4.8 mm, and an expansion ratio of 2. The Reynolds number was in the range of 50 <= Re <= 175. A primary recirculation region has been developed after the sudden expansion and it starts to change to become fully developed flow downstream of the reattachment point The reattachment point is found to move downstream far from the step as Reynolds number increases. Nanofluid of SiO2 nanoparticles is observed to have the highest velocity among other nanofluids types, while nanofluid of Au nanoparticles has the lowest velocity. The static pressure and wall shear stress increase with Reynolds number and vice versa for skin friction coefficient. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据