4.2 Article

Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells

期刊

INTEGRATIVE BIOLOGY
卷 4, 期 9, 页码 1049-1058

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ib20083j

关键词

-

资金

  1. National Defense Science and Engineering Graduate Fellowship
  2. National Science Foundation Graduate Research Fellowship
  3. CIRM [RT2-02022]
  4. CIRM hESC Shared Research Facility award [CL1-00519-1]
  5. UC Berkeley Stem Cell Center Seed Grant
  6. Arnold and Mabel Beckman Young Investigator Award
  7. Army Research Office [W911NF-09-1-0507]
  8. NIH [1DP2OD004213]
  9. NIH Roadmap for Medical Research
  10. OFFICE OF THE DIRECTOR, NATIONAL INSTITUTES OF HEALTH [DP2OD004213] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Human pluripotent stem cells (hPSCs) are of great interest in biology and medicine due to their ability to self-renew and differentiate into any adult or fetal cell type. Important efforts have identified biochemical factors, signaling pathways, and transcriptional networks that regulate hPSC biology. However, recent work investigating the effect of biophysical cues on mammalian cells and adult stem cells suggests that the mechanical properties of the microenvironment, such as stiffness, may also regulate hPSC behavior. While several studies have explored this mechanoregulation in mouse embryonic stem cells (mESCs), it has been challenging to extrapolate these findings and thereby explore their biomedical implications in hPSCs. For example, it remains unclear whether hPSCs can be driven down a given tissue lineage by providing tissue-mimetic stiffness cues. Here we address this open question by investigating the regulation of hPSC neurogenesis by microenvironmental stiffness. We find that increasing extracellular matrix (ECM) stiffness in vitro increases hPSC cell and colony spread area but does not alter self-renewal, in contrast to past studies with mESCs. However, softer ECMs with stiffnesses similar to that of neural tissue promote the generation of early neural ectoderm. This mechanosensitive increase in neural ectoderm requires only a short 5-day soft stiffness pulse, which translates into downstream increases in both total neurons as well as therapeutically relevant dopaminergic neurons. These findings further highlight important differences between mESCs and hPSCs and have implications for both the design of future biomaterials as well as our understanding of early embryonic development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据