4.2 Review

The evolution of chemotaxis assays from static models to physiologically relevant platforms

期刊

INTEGRATIVE BIOLOGY
卷 1, 期 2, 页码 170-181

出版社

OXFORD UNIV PRESS
DOI: 10.1039/b814567a

关键词

-

资金

  1. Science Foundation of Ireland
  2. Health Research Board of Ireland

向作者/读者索取更多资源

The role of chemotactic gradients in the immunological response is an area which elicits a lot of attention due to its impact on the outcome of the inflammatory process. Consequently there are numerous standard in vitro designs which attempt to mimic chemotactic gradients, albeit in static conditions, and with no control over the concentration of the chemokine gradient. In recent times the design of the standard chemotaxis assay has incorporated modern microfluidic platforms, computer controlled flow devices and cell tracking software. Assays under fluid flow which use biochips have provided data which highlight the importance of shear stress on cell attachment and migration towards a chemokine gradient. However, the in vivo environment is far more complex in comparison to conventional cell assay chambers. The designs of biochips are therefore in constant flux as advances in technology permit ever greater imitations of in vivo conditions. Researchers are focused on designing a generation of new biochips and enhancing the physiological relevance of the current assays. The challenge is to combine a shear flow with a 3D scaffold containing the endothelial layer and permitting a natural diffusion of chemokines through a tissue-like basal matrix. Here we review the latest range of chemotaxis assays and assess the innovative features of their designs which enable them to better imitate the in vivo environment. We also present some alternative designs that were initially employed in tissue engineering which could potentially be used in the establishment of novel chemotaxis assays.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据