4.6 Article

Molecular characterization of tick salivary gland glutaminyl cyclase

期刊

INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY
卷 43, 期 9, 页码 781-793

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ibmb.2013.05.011

关键词

Glutaminyl cyclase; RNA interference; Tick neuropeptides; Post-translational modification

资金

  1. American Heart Association [09SDG2280207]
  2. US DOS [PGA-P21049]
  3. National Center for Research Resources [5P20RR016476-11]
  4. National Institute of General Medical Sciences from the National Institutes of Health [8 P20 GM103476-11]

向作者/读者索取更多资源

Glutaminyl cyclase (QC) catalyzes the cyclization of N-terminal glutamine residues into pyroglutamate. This post-translational modification extends the half-life of peptides and, in some cases, is essential in binding to their cognate receptor. Due to its potential role in the post-translational modification of tick neuropeptides, we report the molecular, biochemical and physiological characterization of salivary gland QC during the prolonged blood feeding of the black-legged tick (Ixodes scapularis) and the gulf-coast tick (Amblyomma maculatum). QC sequences from I. scapularis and A. maculatum showed a high degree of amino acid identity to each other and other arthropods and residues critical for zinc binding/catalysis (D159, E202, and H330) or intermediate stabilization (E201, W207, 0248, D305, F325, and W329) are conserved. Analysis of QC transcriptional gene expression kinetics depicts an upregulation during the bloodmeal of adult female ticks prior to fast-feeding phases in both I. scapularis and A. maculatum suggesting a functional link with bloodmeal uptake. QC enzymatic activity was detected in saliva and extracts of tick salivary glands and midguts. Recombinant QC was shown to be catalytically active. Furthermore, knockdown of QC transcript by RNA interference resulted in lower enzymatic activity, and small, unviable egg masses in both studied tick species as well as lower engorged tick weights for I. scapularis. These results suggest that the post-translational modification of neurotransmitters and other bioactive peptides by QC is critical to oviposition and potentially other physiological processes. Moreover, these data suggest that tick-specific QC-modified neurotransmitters/hormones or other relevant parts of this system could potentially be used as novel physiological targets for tick control. (c) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据