4.5 Article

The protection conferred by chelation therapy in post-MI diabetics might be replicated by high-dose zinc supplementation

期刊

MEDICAL HYPOTHESES
卷 84, 期 5, 页码 451-455

出版社

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.mehy.2015.01.038

关键词

-

向作者/读者索取更多资源

The recent Trial to Assess Chelation Therapy (TACT) study, enrolling subjects who had previously experienced a myocardial infarction, has provided strong evidence that intravenous chelation therapy can markedly reduce risk for mortality and vascular events in diabetics, whereas no discernible benefit was observed in non-diabetics. It has plausibly been suggested that this reflects a role for transition metal ions - iron or copper - in the genesis of advanced glycation end products, key mediators of diabetic complications that can destabilize plaque. Since phlebotomy therapy fails to prevent vascular events in diabetics, we hypothesize that labile copper may be the chief culprit whose removal by chelation mediated the benefit observed in TACT. If so, strategies less time and labor intensive than chelation therapy might provide comparable benefit. A number of recent studies report that the copper-specific orally-active chelator trientine can reduce risk for range of diabetic complications in rodents; a clinical trial with this agent demonstrated some decrease in left ventricular mass in diabetics with ventricular hypertrophy. However, until this agent becomes less expensive, supplementation with high-dose zinc may represent a more feasible alternative. Zinc opposes the absorption and redox activity of copper via induction of the antioxidant protein metallothionein, which binds copper tightly. A great many studies demonstrate that increased expression of metallothionein decreases risk for tissue damage in diabetic rodents, and in some of these studies metallothionein expression was boosted by supplemental zinc. Zinc supplementation also modestly improves glycemic control in type 2 diabetics, and might reduce risk for diabetes by protecting pancreatic beta cells from oxidative stress. A long term study assessing the impact of supplementing diabetics with high-dose zinc, assessing risk for mortality, vascular events, and diabetic complications, may be warranted. Histidine, which readily forms complexes with copper that possess superoxide dismutase activity, also has potential for alleviating the contribution of loosely bound copper to AGE formation; moreover, in a recent clinical study, supplemental histidine improved insulin sensitivity and exerted anti-inflammatory and antioxidant effects in women with metabolic syndrome. Since ascorbate can reduce labile copper and thereby enhance its pathogenicity, the impact of high-dose ascorbate supplementation on cardiovascular risk in diabetics should receive further study. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据