4.7 Article

Residual-based fault detection using soft computing techniques for condition monitoring at rolling mills

期刊

INFORMATION SCIENCES
卷 259, 期 -, 页码 304-320

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ins.2013.06.045

关键词

Residual-based fault detection; System identification; Genetic Box-Cox; Fuzzy systems extraction; On-line dynamic residual analysis

向作者/读者索取更多资源

We propose a residual-based approach for fault detection at rolling mills based on data-driven soft computing techniques. It transforms the original measurement signals into a model space by identifying the multi-dimensional relationships contained in the system. Residuals, calculated as deviations from the identified relations and normalized with the model uncertainties, are analyzed on-line with incremental/decremental statistical techniques. The identification of the models and the fault detection concept are conducted solely based on the on-line recorded data streams. Thus, neither annotated samples nor fault patterns/models, which are often very time-intensive and costly to obtain, need to be available a priori. As model architectures, we used pure linear models, a new genetic variant of Box-Cox models (termed as Genetic Box-Cox) reflecting weak non-linearities and Takagi-Sugeno fuzzy models being able to express more complex non-linearities, which are trained with sparse learning techniques. This choice gives us a clue about the degree of non-linearity contained in the system. Our approach is compared with several state-of-the-art approaches including a PCA-based approach, a univariate time-series analysis, a one-class SVM (fault-free) pattern recognizer in the signal space and a combined approach based on time-series model parameter changes. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Computer Science, Artificial Intelligence

pClass: An Effective Classifier for Streaming Examples

Mahardhika Pratama, Sreenatha G. Anavatti, Meng Joo Er, Edwin David Lughofer

IEEE TRANSACTIONS ON FUZZY SYSTEMS (2015)

Editorial Material Computer Science, Artificial Intelligence

Information fusion in smart living technology innovations

Mu-Yen Chen, Edwin Lughofer, Ken Sakamura

INFORMATION FUSION (2015)

Article Computer Science, Information Systems

Fuzzy fault isolation using gradient information and quality criteria from system identification models

Francisco Serdio, Edwin Lughofer, Kurt Pichler, Markus Pichler, Thomas Buchegger, Hajrudin Efendic

INFORMATION SCIENCES (2015)

Article Computer Science, Information Systems

Autonomous data stream clustering implementing split-and-merge concepts - Towards a plug-and-play approach

Edwin Lughofer, Moamar Sayed-Mouchaweh

INFORMATION SCIENCES (2015)

Article Computer Science, Artificial Intelligence

On improving performance of surface inspection systems by online active learning and flexible classifier updates

Eva Weigl, Wolfgang Heidl, Edwin Lughofer, Thomas Radauer, Christian Eitzinger

MACHINE VISION AND APPLICATIONS (2016)

Article Engineering, Mechanical

Fault detection in reciprocating compressor valves under varying load conditions

Kurt Pichler, Edwin Lughofer, Markus Pichler, Thomas Buchegger, Erich Peter Klement, Matthias Huschenbett

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2016)

Article Computer Science, Artificial Intelligence

Scaffolding type-2 classifier for incremental learning under concept drifts

Mahardhika Pratama, Jie Lu, Edwin Lughofer, Guangquan Zhang, Sreenatha Anavatti

NEUROCOMPUTING (2016)

Article Computer Science, Artificial Intelligence

An incremental meta-cognitive-based scaffolding fuzzy neural network

Mahardhika Pratama, Jie Lu, Sreenatha Anavatti, Edwin Lughofer, Chee-Peng Lim

NEUROCOMPUTING (2016)

Article Energy & Fuels

Detecting clipping in photovoltaic solar plants using fuzzy systems on the feature space

Francisco Serdio Fernandez, Miguel Angel Munoz-Garcia, Susanne Saminger-Platz

SOLAR ENERGY (2016)

Article Instruments & Instrumentation

In-line ultrasonic measurement of velocity profiles of wall-slipping polymer melts during extrusion

Veronika Putz, Sylvia Apostol, Ramesh K. Selvasankar, Thomas Voglhuber-Brunnmaier, Juergen Miethlinger, Bernhard G. Zagar, Thomas Buchegger

TM-TECHNISCHES MESSEN (2016)

Article Computer Science, Artificial Intelligence

Improved fault detection employing hybrid memetic fuzzy modeling and adaptive filters

Francisco Serdio, Edwin Lughofer, Alexandru-Ciprian Zavoianu, Kurt Pichler, Markus Pichler, Thomas Buchegger, Hajrudin Efendic

APPLIED SOFT COMPUTING (2017)

Proceedings Paper Engineering, Electrical & Electronic

Fast and Economic Integration of New Classes On the Fly in Evolving Fuzzy Classifiers using Class Decomposition

Edwin Lughofer, Eva Weigl, Wolfgang Heidl, Christian Eitzinger, Thomas Radauer

2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015) (2015)

Article Computer Science, Information Systems

A consensus model considers managing manipulative and overconfident behaviours in large-scale group decision-making

Xia Liang, Jie Guo, Peide Liu

Summary: This paper investigates a novel consensus model based on social networks to manage manipulative and overconfident behaviors in large-scale group decision-making. By proposing a novel clustering model and improved methods, the consensus reaching is effectively facilitated. The feedback mechanism and management approach are employed to handle decision makers' behaviors. Simulation experiments and comparative analysis demonstrate the effectiveness of the model.

INFORMATION SCIENCES (2024)

Article Computer Science, Information Systems

CGN: Class gradient network for the construction of adversarial samples

Xiang Li, Haiwang Guo, Xinyang Deng, Wen Jiang

Summary: This paper proposes a method based on class gradient networks for generating high-quality adversarial samples. By introducing a high-level class gradient matrix and combining classification loss and perturbation loss, the method demonstrates superiority in the transferability of adversarial samples on targeted attacks.

INFORMATION SCIENCES (2024)

Article Computer Science, Information Systems

Distinguishing latent interaction types from implicit feedbacks for recommendation

Lingyun Lu, Bang Wang, Zizhuo Zhang, Shenghao Liu

Summary: Many recommendation algorithms only rely on implicit feedbacks due to privacy concerns. However, the encoding of interaction types is often ignored. This paper proposes a relation-aware neural model that classifies implicit feedbacks by encoding edges, thereby enhancing recommendation performance.

INFORMATION SCIENCES (2024)

Article Computer Science, Information Systems

Proximity-based density description with regularized reconstruction algorithm for anomaly detection

Jaehong Yu, Hyungrok Do

Summary: This study discusses unsupervised anomaly detection using one-class classification, which determines whether a new instance belongs to the target class by constructing a decision boundary. The proposed method uses a proximity-based density description and a regularized reconstruction algorithm to overcome the limitations of existing one-class classification methods. Experimental results demonstrate the superior performance of the proposed algorithm.

INFORMATION SCIENCES (2024)

Article Computer Science, Information Systems

Non-iterative border-peeling clustering algorithm based on swap strategy

Hui Tu, Shifei Ding, Xiao Xu, Haiwei Hou, Chao Li, Ling Ding

Summary: Border-Peeling algorithm is a density-based clustering algorithm, but its complexity and issues on unbalanced datasets restrict its application. This paper proposes a non-iterative border-peeling clustering algorithm, which improves the clustering performance by distinguishing and associating core points and border points.

INFORMATION SCIENCES (2024)

Article Computer Science, Information Systems

A two-stage denoising framework for zero-shot learning with noisy labels

Long Tang, Pan Zhao, Zhigeng Pan, Xingxing Duan, Panos M. Pardalos

Summary: In this work, a two-stage denoising framework (TSDF) is proposed for zero-shot learning (ZSL) to address the issue of noisy labels. The framework includes a tailored loss function to remove suspected noisy-label instances and a ramp-style loss function to reduce the negative impact of remaining noisy labels. In addition, a dynamic screening strategy (DSS) is developed to efficiently handle the nonconvexity of the ramp-style loss.

INFORMATION SCIENCES (2024)

Article Computer Science, Information Systems

Selection of a viable blockchain service provider for data management within the internet of medical things: An MCDM approach to Indian healthcare

Raghunathan Krishankumar, Sundararajan Dhruva, Kattur S. Ravichandran, Samarjit Kar

Summary: Health 4.0 is gaining global attention for better healthcare through digital technologies. This study proposes a new decision-making framework for selecting viable blockchain service providers in the Internet of Medical Things (IoMT). The framework addresses the limitations in previous studies and demonstrates its applicability in the Indian healthcare sector. The results show the top ranking BSPs, the importance of various criteria, and the effectiveness of the developed model.

INFORMATION SCIENCES (2024)

Article Computer Science, Information Systems

Q-learning with heterogeneous update strategy

Tao Tan, Hong Xie, Liang Feng

Summary: This paper proposes a heterogeneous update idea and designs HetUp Q-learning algorithm to enlarge the normalized gap by overestimating the Q-value corresponding to the optimal action and underestimating the Q-value corresponding to the other actions. To address the limitation, a softmax strategy is applied to estimate the optimal action, resulting in HetUpSoft Q-learning and HetUpSoft DQN. Extensive experimental results show significant improvements over SOTA baselines.

INFORMATION SCIENCES (2024)

Article Computer Science, Information Systems

Dyformer: A dynamic transformer-based architecture for multivariate time series classification

Chao Yang, Xianzhi Wang, Lina Yao, Guodong Long, Guandong Xu

Summary: This paper proposes a dynamic transformer-based architecture called Dyformer for multivariate time series classification. Dyformer captures multi-scale features through hierarchical pooling and adaptive learning strategies, and improves model performance by introducing feature-map-wise attention mechanisms and a joint loss function.

INFORMATION SCIENCES (2024)

Article Computer Science, Information Systems

ESSENT: an arithmetic optimization algorithm with enhanced scatter search strategy for automated test case generation

Xiguang Li, Baolu Feng, Yunhe Sun, Ammar Hawbani, Saeed Hammod Alsamhi, Liang Zhao

Summary: This paper proposes an enhanced scatter search strategy, using opposition-based learning, to solve the problem of automated test case generation based on path coverage (ATCG-PC). The proposed ESSENT algorithm selects the path with the lowest path entropy among the uncovered paths as the target path and generates new test cases to cover the target path by modifying the dimensions of existing test cases. Experimental results show that the ESSENT algorithm outperforms other state-of-the-art algorithms, achieving maximum path coverage with fewer test cases.

INFORMATION SCIENCES (2024)

Article Computer Science, Information Systems

An attention based approach for automated account linkage in federated identity management

Shirin Dabbaghi Varnosfaderani, Piotr Kasprzak, Aytaj Badirova, Ralph Krimmel, Christof Pohl, Ramin Yahyapour

Summary: Linking digital accounts belonging to the same user is crucial for security, user satisfaction, and next-generation service development. However, research on account linkage is mainly focused on social networks, and there is a lack of studies in other domains. To address this, we propose SmartSSO, a framework that automates the account linkage process by analyzing user routines and behavior during login processes. Our experiments on a large dataset show that SmartSSO achieves over 98% accuracy in hit-precision.

INFORMATION SCIENCES (2024)

Article Computer Science, Information Systems

A memetic algorithm with fuzzy-based population control for the joint order batching and picker routing problem

Renchao Wu, Jianjun He, Xin Li, Zuguo Chen

Summary: This paper proposes a memetic algorithm with fuzzy-based population control (MA-FPC) to solve the joint order batching and picker routing problem (JOBPRP). The algorithm incorporates batch exchange crossover and a two-level local improvement procedure. Experimental results show that MA-FPC outperforms existing algorithms in terms of solution quality.

INFORMATION SCIENCES (2024)

Article Computer Science, Information Systems

Refining one-class representation: A unified transformer for unsupervised time-series anomaly detection

Guoxiang Zhong, Fagui Liu, Jun Jiang, Bin Wang, C. L. Philip Chen

Summary: In this study, we propose the AMFormer framework to address the problem of mixed normal and anomaly samples in deep unsupervised time-series anomaly detection. By refining the one-class representation and introducing the masked operation mechanism and cost sensitive learning theory, our approach significantly improves anomaly detection performance.

INFORMATION SCIENCES (2024)

Article Computer Science, Information Systems

A data-driven optimisation method for a class of problems with redundant variables and indefinite objective functions

Jin Zhou, Kang Zhou, Gexiang Zhang, Ferrante Neri, Wangyang Shen, Weiping Jin

Summary: In this paper, the authors focus on the issue of multi-objective optimisation problems with redundant variables and indefinite objective functions (MOPRVIF) in practical problem-solving. They propose a dual data-driven method for solving this problem, which consists of eliminating redundant variables, constructing objective functions, selecting evolution operators, and using a multi-objective evolutionary algorithm. The experiments conducted on two different problem domains demonstrate the effectiveness, practicality, and scalability of the proposed method.

INFORMATION SCIENCES (2024)

Article Computer Science, Information Systems

A Monte Carlo fuzzy logistic regression framework against imbalance and separation

Georgios Charizanos, Haydar Demirhan, Duygu Icen

Summary: This article proposes a new fuzzy logistic regression framework that addresses the problems of separation and imbalance while maintaining the interpretability of classical logistic regression. By fuzzifying binary variables and classifying subjects based on a fuzzy threshold, the framework demonstrates superior performance on imbalanced datasets.

INFORMATION SCIENCES (2024)