4.7 Article

Optimal depth estimation by combining focus measures using genetic programming

期刊

INFORMATION SCIENCES
卷 181, 期 7, 页码 1249-1263

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ins.2010.11.039

关键词

3D shape recovery; Focus measure; Genetic programming; Shape From Focus; Combining focus measures

资金

  1. BioImaging Research Center at GIST

向作者/读者索取更多资源

Three-dimensional (3D) shape reconstruction is a fundamental problem in machine vision applications. Shape From Focus (SFF) is one of the passive optical methods for 3D shape recovery that uses degree of focus as a cue to estimate 3D shape. In this approach, usually a single focus measure operator is applied to measure the focus quality of each pixel in the image sequence. However, the applicability of a single focus measure is limited to estimate accurately the depth map for diverse type of real objects. To address this problem, we develop Optimal Composite Depth (OCD) function through genetic programming (GP) for accurate depth estimation. The OCD function is constructed by optimally combining the primary information extracted using one/or more focus measures. The genetically developed composite function is then used to compute the optimal depth map of objects. The performance of the developed nonlinear function is investigated using both the synthetic and the real world image sequences. Experimental results demonstrate that the proposed estimator is more useful in computing accurate depth maps as compared to the existing SFF methods. Moreover, it is found that the heterogeneous function is more effective than homogeneous function. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据