4.7 Article

An improved nonproportional cyclic plasticity model for multiaxial low-cycle fatigue and ratcheting responses of 304 stainless steel

期刊

MECHANICS OF MATERIALS
卷 91, 期 -, 页码 12-25

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mechmat.2015.05.011

关键词

Cyclic plasticity; Multiaxial fatigue; Nonproportionality; Low cycle fatigue; Ratcheting; Cross hardening parameter

向作者/读者索取更多资源

An existing cyclic plasticity constitutive model is enhanced to simulate low-cycle fatigue and ratcheting responses of 304 stainless steel (SS) under proportional and various nonproportional loading cycles. Nonproportional loading and multiaxial ratcheting parameters, and strain range dependent cyclic hardening/softening modeling features are incorporated into a modified Ohno-Wang model to enhance its uniaxial and multiaxial loading responses. The improved constitutive model is incorporated in the commercial Finite Element Code ABAQUS through its user defined subroutine UMAT and the responses of 304 SS tubular specimen from literature have been simulated. The proposed model has demonstrated good correlation with uniaxial and different types of multiaxial fatigue and ratcheting responses. Two types of multiaxial loading cycles are studied; the first included axial and torsion cycles along different loading paths, and the second included steady internal pressure and axial strain or stress cycles. The axial-torsional loading cycles demonstrated axial and/or shear strain ratcheting, whereas the internal pressure-axial cycles demonstrated axial and/or circumferential strain ratcheting. Complex interactions between ratcheting strains in different directions along with the rate of ratcheting are simulated well by the improved Ohno-Wang model. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据