4.7 Article

A journal bearing with variable geometry for the suppression of vibrations in rotating shafts: Simulation, design, construction and experiment

期刊

MECHANICAL SYSTEMS AND SIGNAL PROCESSING
卷 52-53, 期 -, 页码 506-528

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ymssp.2014.07.002

关键词

Journal bearing; Variable geometry; Vibration quenching; Passive control

资金

  1. German Federal Ministry of Economics and Technology (Bundesministerium fur Wirtschaft und Technologie - BMWi)

向作者/读者索取更多资源

The idea for a journal bearing with variable geometry was formerly developed and investigated on its principles of operation giving very optimistic theoretical results for the vibration quenching of simple and more complicated rotor bearing systems during the passage through the first critical speed. The journal bearing with variable geometry is presented in this paper in its final form with the detailed design procedure. The current journal bearing was constructed in order to be applied in a simple real rotor bearing system that already exists as an experimental facility. The current paper presents details on the manufactured prototype bearing as an experimental continuation of previous works that presented the simulation of the operating principle of this journal bearing. The design parameters are discussed thoroughly under the numerical simulation for the fluid film pressure in dependency of the variable fluid film thickness during the operation conditions. The implementation of the variable geometry bearing in an experimental rotor bearing system is outlined. Various measurements highlight the efficiency of the proposed bearing element in vibration quenching during the passage through resonance. The inspiration for the current idea is based on the fact that the alteration of the fluid film characteristics of stiffness and damping during the passage through resonance results in vibration quenching. This alteration of the bearing characteristics is achieved by the introduction of an additional fluid film thickness using the passive displacement of the lower half-bearing part. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Mechanical

A design method for selecting the physical parameters of a free piston Stirling engine

Seon-Jun Jang, Michael J. Brennan, Fadi Dohnal, Yoon-Pyo Lee

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE (2017)

Article Engineering, Mechanical

Finite length floating ring bearings: Operational characteristics using analytical methods

Athanasios Chasalevris

TRIBOLOGY INTERNATIONAL (2016)

Article Automation & Control Systems

Tuning transient dynamics by induced modal interaction in mechatronic systems

Fadi Dohnal

MECHATRONICS (2018)

Article Engineering, Mechanical

Alignment and rotordynamic optimization of turbine shaft trains using adjustable bearings in real-time operation

Athanasios Chasalevris, Gilles Guignier

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE (2019)

Article Engineering, Mechanical

An approach to account for interfering parametric resonances and anti-resonances applied to examples from rotor dynamics

Thomas Breunung, Fadi Dohnal, Bastian Pfau

NONLINEAR DYNAMICS (2019)

Article Mechanics

Enhanced vibration decay in high-Q resonators by confined of parametric excitation

Miguel Ramirez-Barrios, Fadi Dohnal, Joaquin Collado

ARCHIVE OF APPLIED MECHANICS (2020)

Article Engineering, Mechanical

Stability and Hopf bifurcations in rotor-bearing-foundation systems of turbines and generators

Athanasios Chasalevris

TRIBOLOGY INTERNATIONAL (2020)

Article Engineering, Chemical

Creation of Liquid-Air Dispersions in Oil and Water: Comparison of Calculations and Measurements

Lukas Hafner, Steffen Schwarzer, Fadi Dohnal

Summary: Investigated the bubble formation mechanisms for oil/air media combination and found significant differences compared to water/air combination. The results obtained will help to design bubble columns in a more targeted manner in the future, leading to resource and energy savings in industrial test stands.

CHEMIE INGENIEUR TECHNIK (2021)

Review Nanoscience & Nanotechnology

The potential of SERS as an AST methodology in clinical settings

Ota Samek, Silvie Bernatova, Fadi Dohnal

Summary: The ability to rapidly and reliably identify and characterize microorganisms from tiny sample volumes is crucial in the diagnostics of microbial infections. Surface enhanced Raman scattering (SERS) has shown great potential in providing a rapid and accurate method for diagnosing infections, with a focus on bacteria. SERS spectra of bacteria, generated from secreted metabolic substances, offer a valuable tool in differentiating cell types and physiological states, and have the potential for routine point-of-care tests in clinical settings.

NANOPHOTONICS (2021)

Article Engineering, Mechanical

Optimizing energy dissipation in gas foil bearings to eliminate bifurcations of limit cycles in unbalanced rotor systems

Panagiotis Papafragkos, Ioannis Gavalas, Ioannis Raptopoulos, Athanasios Chasalevris

Summary: This study identifies the dissipating work in gas foil bearings as the source of self-excited motions in high-speed rotor systems. By optimizing design parameters, especially the properties of bump foils, bifurcations can be eliminated and system stability can be improved.

NONLINEAR DYNAMICS (2023)

Article Engineering, Chemical

Map determination for the calculation of dispersion spectra in flowing oil-gas dispersions

Lukas Hafner, Martin Brunner, Nadja Konrad, Steffen Schwarzer, Fadi Dohnal

Summary: A physical model-based approach is proposed to accelerate the design of liquid-gas mixtures and control their quality.

CHEMICAL ENGINEERING RESEARCH & DESIGN (2023)

Proceedings Paper Engineering, Mechanical

Modal Balancing Using Parametric Combination Resonance

Ricardo Ugliara Mendes, Fadi Dohnal

PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON ROTOR DYNAMICS - IFTOMM, VOL. 4 (2019)

Article Engineering, Manufacturing

Numerical investigation of chatter suppression via parametric anti-resonance in a motorized spindle unit during milling

E. Abele, F. Dohnal, M. Feulner, T. Sielaff, C. Daume

PRODUCTION ENGINEERING-RESEARCH AND DEVELOPMENT (2018)

Proceedings Paper Engineering, Mechanical

Targeted model energy transfer using a time-periodic support

Fadi Dohnal

SCHWINGUNGEN 2017: BERECHNUNG, UBERWACHUNG, ANWENDUNG (2017)

Article Engineering, Mechanical

Approximate symplectic approach for mistuned bladed disk dynamic problem

Xuanen Kan, Yanjun Lu, Fan Zhang, Weipeng Hu

Summary: A blade disk system is crucial for the energy conversion efficiency of turbomachinery, but differences between blades can result in localized vibration. This study develops an approximate symplectic method to simulate vibration localization in a mistuned bladed disk system and reveals the influences of initial positive pressure, contact angle, and surface roughness on the strength of vibration localization.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Dynamic characteristics of spur gear system with tooth root crack considering gearbox flexibility

Zimeng Liu, Cheng Chang, Haodong Hu, Hui Ma, Kaigang Yuan, Xin Li, Xiaojian Zhao, Zhike Peng

Summary: Considering the calculation efficiency and accuracy of meshing characteristics of gear pair with tooth root crack fault, a parametric model of cracked spur gear is established by simplifying the crack propagation path. The LTCA method is used to calculate the time-varying meshing stiffness and transmission error, and the results are verified by finite element method. The study also proposes a crack area share index to measure the degree of crack fault and determines the application range of simplified crack propagation path.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

A novel forward computational modal analysis method of the motor stator assembly considering core lamination and winding stacking

Rongjian Sun, Conggan Ma, Nic Zhang, Chuyo Kaku, Yu Zhang, Qirui Hou

Summary: This paper proposes a novel forward calculation method (FCM) for calculating anisotropic material parameters (AMPs) of the motor stator assembly, considering structural discontinuities and composite material properties. The method is based on multi-scale theory and decouples the multi-scale equations to describe the equivalence and equivalence preconditions of AMPs of two scale models. The effectiveness of this method is verified by modal experiments.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

An Intelligent Scheduling System and Hybrid Optimization Algorithm for Ship Locks of the Three Gorges Hub on the Yangtze River

Hao Zhang, Jiangcen Ke

Summary: This research introduces an intelligent scheduling system framework to optimize the ship lock schedule of the Three Gorges Hub. By analyzing navigational rules, operational characteristics, and existing problems, a mixed-integer nonlinear programming model is formulated with multiple objectives and constraints, and a hybrid intelligent algorithm is constructed for optimization.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

An enhanced ultrasonic method for monitoring and predicting stress loss in multi-layer structures via vibro-acoustic modulation

Jingjing He, Xizhong Wu, Xuefei Guan

Summary: A sensitivity and reliability enhanced ultrasonic method has been developed in this study to monitor and predict stress loss in pre-stressed multi-layer structures. The method leverages the potential breathing effect of porous cushion materials in the structures to increase the sensitivity of the signal feature to stress loss. Experimental investigations show that the proposed method offers improved accuracy, reliability, and sensitivity to stress change.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Spectral estimation model for linear displacement and vibration monitoring with GBSAR system

Benyamin Hosseiny, Jalal Amini, Hossein Aghababaei

Summary: This paper presents a method for monitoring sub-second or sub-minute displacements using GBSAR signals, which employs spectral estimation to achieve multi-dimensional target detection. It improves the processing of MIMO radar data and enables high-resolution fast displacement monitoring from GBSAR signals.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Transformer-based meta learning method for bearing fault identification under multiple small sample conditions

Xianze Li, Hao Su, Ling Xiang, Qingtao Yao, Aijun Hu

Summary: This paper proposes a novel method for bearing fault identification, which can accurately identify faults with few samples under complex working conditions. The method is based on a Transformer meta-learning model, and the final result is determined by the weighted voting of multiple models.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Correlation warping radius tracking for condition monitoring of rolling bearings under varying operating conditions

Xiaomeng Li, Yi Wang, Guangyao Zhang, Baoping Tang, Yi Qin

Summary: Inspired by chaos fractal theory and slowly varying damage dynamics theory, this paper proposes a new health monitoring indicator for vibration signals of rotating machinery, which can effectively monitor the mechanical condition under both cyclo-stationary and variable operating conditions.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Latching control: A wave energy converter inspired vibration control strategy

Hao Wang, Songye Zhu

Summary: This paper extends the latching mechanism to vibration control to improve energy dissipation efficiency. An innovative semi-active latched mass damper (LMD) is proposed, and different latching control strategies are tested and evaluated. The latching control can optimize the phase lag between control force and structural response, and provide an innovative solution to improve damper effectiveness and develop adaptive semi-active dampers.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

A hierarchical Bayesian modeling framework for identification of Non-Gaussian processes

Menghao Ping, Xinyu Jia, Costas Papadimitriou, Xu Han, Chao Jiang, Wang-Ji Yan

Summary: Identification of non-Gaussian processes is a challenging task in engineering problems. This article presents an improved orthogonal series expansion method to convert the identification of non-Gaussian processes into a finite number of non-Gaussian coefficients. The uncertainty of these coefficients is quantified using polynomial chaos expansion. The proposed method is applicable to both stationary and nonstationary non-Gaussian processes and has been validated through simulated data and real-world applications.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Double mechanical frequencies locking phenomenon in a piezoelectric driven 3-DOF magnetic coupling resonator

Lei Li, Wei Yang, Dongfa Li, Jianxin Han, Wenming Zhang

Summary: The frequency locking phenomenon induced by modal coupling can effectively overcome the dependence of peak frequency on driving strength in nonlinear resonant systems and improve the stability of peak frequency. This study proposes the double frequencies locking phenomenon in a three degrees of freedom (3-DOF) magnetic coupled resonant system driven by piezoelectricity. Experimental and theoretical investigations confirm the occurrence of first frequency locking and the subsequent switching to second frequency locking with the increase of driving force. Furthermore, a mass sensing scheme for double analytes is proposed based on the double frequencies locking phenomenon.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Torsional vibration attenuation of a closed-loop engine crankshaft system via the tuned mass damper and nonlinear energy sink under multiple operating conditions

Kai Ma, Jingtao Du, Yang Liu, Ximing Chen

Summary: This study explores the feasibility of using nonlinear energy sinks (NES) as replacements for traditional linear tuned mass dampers (TMD) in practical engineering applications, specifically in diesel engine crankshafts. The results show that NES provides better vibration attenuation for the crankshaft compared to TMD under different operating conditions.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Mixed-flow pump cavitation characteristics extraction based on power spectrum density through pressure pulsation signal analysis

Wentao Xu, Li Cheng, Shuaihao Lei, Lei Yu, Weixuan Jiao

Summary: In this study, a high-precision hydraulic mechanical stand and a vertical mixed-flow pumping station device were used to conduct research on cavitation signals of mixed-flow pumps. By analyzing the water pressure pulsation signal, it was found that the power spectrum density method is more sensitive and capable of extracting characteristics compared to traditional time-frequency domain analysis. This has significant implications for the identification and prevention of cavitation in mixed-flow pump machinery.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Design of a two-stage compliant asymmetric piezoelectrically actuated microgripper with parasitic motion compensation

Xiaodong Chen, Kang Tai, Huifeng Tan, Zhimin Xie

Summary: This paper addresses the issue of parasitic motion in microgripper jaws and its impact on clamping accuracy, and proposes a symmetrically stressed parallelogram mechanism as a solution. Through mechanical modeling and experimental validation, the effectiveness of this method is demonstrated.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Influences of inclined crack defects on vibration characteristics of cylindrical roller bearings

Zhifeng Shi, Gang Zhang, Jing Liu, Xinbin Li, Yajun Xu, Changfeng Yan

Summary: This study provides useful guidance for early bearing fault detection and diagnosis by investigating the effects of crack inclination and propagation direction on the vibration characteristics of bearings.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)