4.6 Article

Assessing the Dynamic Viscosity of Na-K-Ca-Cl-H2O Aqueous Solutions at High-Pressure and High-Temperature Conditions

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 53, 期 28, 页码 11488-11500

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ie501702z

关键词

-

向作者/读者索取更多资源

Most industrial areas, especially oilfield operations and geothermal reservoirs, deal with varying viscosities in multicomponent electrolyte solutions. An accurate estimate of this property as a function of pressure, temperature, and varying salt concentrations is highly desirable. Although a number of empirical correlations have already been developed, they are still limited to single electrolyte solutions and can only operate over specified temperature and pressure ranges. In this study, a highly accurate model based on an adaptive network-based fuzzy inference system was developed, mainly devoted to dynamic viscosity prediction in aqueous multicomponent chloride solutions. Crisp input data were transformed into fuzzy sets employing the subtractive clustering algorithm with an effective radius optimized by a hybrid of genetic algorithm and particle swarm optimization technique. Comparing the model with thousands of experimental data concluded in squared correlation coefficient (R-2) of 0.9986 and an average absolute error of 1.59%. The developed model was also found to outperform a number of empirical correlations that are employed for the viscosity determination of single electrolyte solutions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据