4.6 Article

Modification of Crystal Shape through Deep Temperature Cycling

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 53, 期 13, 页码 5325-5336

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ie400859d

关键词

-

向作者/读者索取更多资源

The evolution of particle shape is an important consideration in many industrial crystallizations. This article describes the design of temperature-cycling experiments (between alternating positive and negative supersaturations) to substantially change crystal shape with only a small number of cycles. The growth and dissolution of monosodium glutamate crystals of varying shapes were monitored using in-process attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), focused beam reflectance measurement (FBRM), particle vision and measurement (PVM), and off-line optical microscopy. The growth and dissolution kinetics were estimated in a multidimensional population balance model based on solute concentration and crystal dimension measurements. This model fitted the experimental data with a limited number of parameters of small uncertainty. In addition, with the estimated kinetic parameters, the model predicted the crystal size and shape distribution in a different temperature-cycling experiment reasonably well. In contrast to previous studies that have estimated kinetics along multiple crystal axes in mixed-tank crystallizers, this study implements dissolution terms in the multidimensional population balance model along multiple axes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据