4.6 Article Proceedings Paper

Rigorous Design of Complex Distillation Columns Using Process Simulators and the Particle Swarm Optimization Algorithm

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 52, 期 44, 页码 15621-15634

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ie400918x

关键词

-

资金

  1. Spanish Ministerio de Ciencia e Innovacion [CTQ2009-14420-C02-02, CTQ2012-37039-C02-02]

向作者/读者索取更多资源

We present a derivative-free optimization algorithm coupled with a chemical process simulator for the optimal design of individual and complex distillation processes using a rigorous tray-by-tray model. The proposed approach serves as an alternative tool to the various models based on nonlinear programming (NLP) or mixed-integer nonlinear programming (MINLP). This is accomplished by combining the advantages of using a commercial process simulator (Aspen Hysys), including especially suited numerical methods developed for the convergence of distillation columns, with the benefits of the particle swarm optimization (PSO) metaheuristic algorithm, which does not require gradient information and has the ability to escape from local optima. Our method inherits the superstructure developed in Yeomans, H.; Grossmann, I. E. Optimal design of complex distillation columns using rigorous tray-by-tray disjunctive programming models. Ind. Eng. Chem. Res. 2000, 39 (11), 4326-4335, in which the nonexisting trays are considered as simple bypasses of liquid and vapor flows. The implemented tool provides the optimal configuration of distillation column systems, which includes continuous and discrete variables, through the minimization of the total annual cost (TAC). The robustness and flexibility of the method is proven through the successful design and synthesis of three distillation systems of increasing complexity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据