4.6 Article

Optimization and Modeling of Photocatalytic Degradation of Azo Dye Using a Response Surface Methodology (RSM) Based on the Central Composite Design with Immobilized Titania Nanoparticles

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 51, 期 11, 页码 4199-4207

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ie202809w

关键词

-

向作者/读者索取更多资源

The experimental design methodology was used to model and optimize the operational parameters of the photocatalytic degradation of Acid Red 73 using immobilized TiO2 nanoparticles. Four experimental parameters were chosen as independent variables: pH, initial dye concentration, H2O2 concentration, and anion concentration. A multivariate experimental design was used to establish a quadratic model as a functional relationship between the efficiency of Acid Red 73 degradation (response) and four independent variables. The degradation efficiency was significantly affected by the initial dye concentration and the pH. The optimal values of the parameters were found to be a pH of 3, an initial dye concentration of 25 mg/L, an H2O2 concentration of 0.5 mg/L, and an anion concentration of 0.69 mg/L. The degradation efficiency approached 92.24% under optimal conditions. Regression analysis with an R-2 value of 0.9785 indicated a satisfactory correlation between the experimental data and predicted values.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据