4.3 Article

Effects of Restraint and Immobilization on Electrosensory Behaviors of Weakly Electric Fish

期刊

ILAR JOURNAL
卷 50, 期 4, 页码 361-372

出版社

OXFORD UNIV PRESS
DOI: 10.1093/ilar.50.4.361

关键词

curare; distress; electric fish; electric organ discharge (EOD); electrocommunication; immobilization; jamming avoidance response (JAR); pain; restraint; stress

资金

  1. National Science Foundation [IOB-0543985]
  2. Canadian Institutes of Health Research
  3. Canada Foundation for Innovation
  4. Canada Research Chairs

向作者/读者索取更多资源

Weakly electric fishes have been an important model system in behavioral neuroscience for more than 40 years. These fishes use a specialized electric organ to produce an electric field that is typically below 1 volt/cm and serves in many behaviors including social communication and prey detection. Electrical behaviors are easy to study because inexpensive and widely available tools enable continuous monitoring of the electric field of individual or groups of interacting fish. Weakly electric fish have been routinely used in tightly controlled neurophysiological experiments in which the animal is immobilized using neuromuscular blockers (e. g., curare). Although experiments that involve immobilization are generally discouraged because it eliminates movement-based behavioral signs of pain and distress, many observable electrosensory behaviors in fish persist when the animal is immobilized. Weakly electric fish thus offer a unique opportunity to assess the effects of immobilization on behaviors including those that may reflect pain and distress. We investigated the effects of both immobilization and restraint on a variety of electrosensory behaviors in four species of weakly electric fishes and observed minor effects that were not consistent between the species tested or between particular behaviors. In general, we observed small increases and decreases in response magnitude to particular electrosensory stimuli. Stressful events such as asphyxiation and handling, however, resulted in significant changes in the fishes' electrosensory behaviors. Signs of pain and distress include marked reductions in responses to electrosensory stimuli, inconsistent responses, and reductions in or complete cessation of the autogenous electric field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据