4.6 Article

Multiobjective controller design by solving a multiobjective matrix inequality problem

期刊

IET CONTROL THEORY AND APPLICATIONS
卷 8, 期 16, 页码 1656-1665

出版社

INST ENGINEERING TECHNOLOGY-IET
DOI: 10.1049/iet-cta.2014.0026

关键词

-

资金

  1. Ministry of Science and Technology of Taiwan [102-2218-E-155-004-MY3]

向作者/读者索取更多资源

In this study, linear matrix inequality (LMI) approaches and multiobjective (MO) evolutionary algorithms are integrated to design controllers. An MO matrix inequality problem (MOMIP) is first defined. A hybrid MO differential evolution (HMODE) algorithm is then developed to solve the MOMIP. The hybrid algorithm combines deterministic and stochastic searching schemes. In the solving process, the deterministic part aims to exploit the structures of matrix inequalities, and the stochastic part is used to fully explore the decision variable space. Simulation results show that the HMODE algorithm can produce an approximated Pareto front (APF) and Pareto-efficient controllers that stabilise the associated controlled system. In contrast with single-objective designs using LMI approaches, the proposed MO methodology can clearly illustrate how the objectives involved affect each other, that is, a broad perspective on optimality is provided. This facilitates the selecting process for a representative design, and particularly the design that corresponds to a non-dominated vector lying in the knee region of the APF. In addition, controller gains can be readily modified to incorporate the preference or need of a system designer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据