4.7 Article

Algorithms for Real-Time Estimation of Individual Wheel Tire-Road Friction Coefficients

期刊

IEEE-ASME TRANSACTIONS ON MECHATRONICS
卷 17, 期 6, 页码 1183-1195

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMECH.2011.2159240

关键词

Estimation; observer; tire-road friction coefficient; vehicle dynamics

向作者/读者索取更多资源

It is well recognized in the automotive research community that knowledge of the real-time tire-road friction coefficient can be extremely valuable for active safety applications, including traction control, yaw stability control and rollover prevention. Previous research results in literature have focused on the estimation of average tire-road friction coefficient for the entire vehicle. This paper explores the development of algorithms for reliable estimation of independent friction coefficients at each individual wheel of the vehicle. Three different observers are developed for the estimation of slip ratios and longitudinal tire forces, based on the types of sensors available. After estimation of slip ratio and tire force, the friction coefficient is identified using a recursive least-squares parameter identification formulation. The observers include one that utilizes engine torque, brake torque, and GPS measurements, one that utilizes torque measurements and an accelerometer and one that utilizes GPS measurements and an accelerometer. The developed algorithms are first evaluated in simulation and then evaluated experimentally on a Volvo XC90 sport utility vehicle. Experimental results demonstrate the feasibility of estimating friction coefficients at the individual wheels reliably and quickly. The sensitivities of the observers to changes in vehicle parameters are evaluated and comparisons of robustness of the observers are provided.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据