4.7 Article

Effects of nanometric inclusions on the microstructural characteristics and strengthening of a friction-stir processed aluminum-magnesium alloy

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2015.06.081

关键词

Al alloy; Friction stir processing; Nanocomposite; TiO2; Phase formation; Mechanical property

资金

  1. Iranian National Elite's Foundation
  2. SRDA [APVV-0647-10, APVV-0076-11]

向作者/读者索取更多资源

An aluminum-magnesium alloy was friction-stir processed in the presence of TiO2 nanoparticles which were pre-placed in a groove on the surface to produce a composite. Field emission-scanning and transmission electron microscopy studies show that solid state chemical reactions occur between the Al-Mg matrix and the ceramic particles upon the severe plastic deformation process. The microstructure of the aluminum alloy consists of a coarse grain structure, large complex (Fe,Mn,Cr)(3)SiAl12 particles, and small Mg2Si precipitates. After friction stir processing, a deformed grain structure containing rod-like Al-Fe-Mn-Si precipitates is attained, along with cuboidal (similar to 100 nm) Cr-2 precipitates and spherical (similar to 100 and 5 nm) Mg2Si particles. In the presence of TiO2 nanoparticles, magnesium oxide (MgO) and titanium aluminide (Al3Ti) nanophases are formed. It is shown that these microstructural modifications lead to a significant enhancement in the hardness and tensile strength of the aluminum alloy. The relationship between the microstructural evolution and mechanical properties and the role of hard inclusions are presented and discussed. An analysis based on strengthening models indicates that the yield strength of the nanocomposite is mainly controlled by dislocations and grain boundaries rather than the nano-scale inclusions. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据