4.7 Article

A New Predictive Lateral Load Transfer Ratio for Rollover Prevention Systems

期刊

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
卷 62, 期 7, 页码 2928-2936

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2013.2252930

关键词

Active vehicle safety; rollover detection; rollover prevention; vehicle dynamics

向作者/读者索取更多资源

In rollover prevention systems, a real-time lateral load transfer ratio (LTR) is typically computed to predict the likelihood of a vehicle to rollover and, hence, initiate rollover prevention measures. A traditional LTR largely relies on a lateral accelerometer signal to calculate rollover propensity. A new predictive LTR (PLTR) is developed in this paper, which utilizes a driver's steering input and several other sensor signals available from the vehicle's electronic stability control system. The new PLTR index can provide a time-advanced measure of rollover propensity and, therefore, offers significant benefits for closed-loop rollover prevention. Simulation results are presented using the industry-standard software CarSim to demonstrate the benefits of the new PLTR index. Experimental results of open-loop comparisons between LTR and PLTR indexes are presented, followed by experimental results on the closed-loop implementation of a PLTR-based rollover prevention system. The results in this paper document how a predictive rollover index can be developed and the advantages of such a system in rollover prevention.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据