4.7 Article

DSP-Based Sensorless Electric Motor Fault-Diagnosis Tools for Electric and Hybrid Electric Vehicle Powertrain Applications

期刊

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
卷 58, 期 6, 页码 2679-2688

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2009.2012430

关键词

Digital signal processor (DSP)-based fault detection; hybrid electric vehicle (HEV); induction motor; motor fault diagnosis

向作者/读者索取更多资源

The integrity of electric motors in work and passenger vehicles can best be maintained by frequently monitoring their condition. In this paper, a signal processing-based motor fault-diagnosis scheme in detail is presented. The practicability and reliability of the proposed algorithm are tested on rotor asymmetry detection at zero speed, i.e., at startup and idle modes in the case of a vehicle. Regular rotor asymmetry tests are done when the motor is running at a certain speed under load with stationary current signal assumption. It is quite challenging to obtain these regular test conditions for long-enough periods of time during daily vehicle operations. In addition, automobile vibrations cause nonuniform air-gap motor operation that directly affects the inductances of electric motors and results in a noisy current spectrum. Therefore, it is challenging to apply conventional rotor fault-detection methods while examining the condition of electric motors as part of the hybrid electric vehicle (HEV) powertrain. The proposed method overcomes the aforementioned problems by simply testing the rotor asymmetry at zero speed. This test can be achieved at startup or repeated during idle modes, where the speed of the vehicle is zero. The proposed method can be implemented at no cost using the readily available electric motor inverter sensor and microprocessing unit. Induction motor fault signatures are experimentally tested online by employing the drive-embedded master processor [TMS320F2812 digital signal processor (DSP)] to prove the effectiveness of the proposed method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据