4.1 Article

Petri Net Decomposition Approach for Dispatching and Conflict-Free Routing of Bidirectional Automated Guided Vehicle Systems

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSMCA.2012.2183353

关键词

Automated guided vehicles (AGVs); conflict-free routing; deadlock avoidance; decomposition; optimization; Petri nets

向作者/读者索取更多资源

In this paper, we address a Petri net decomposition approach for simultaneous dispatching and conflict-free routing for bidirectional automated guided vehicle (AGV) systems in dynamic environments. To solve the dynamic problem, static problems for finding near-optimal dispatching and conflict-free routing are solved each time when transportation requests are given. The static problem is converted to an optimal firing sequence problem for a timed Petri net. A Petri net decomposition approach is applied to solve the problem efficiently. In the algorithm, the entire Petri net is decomposed into task and AGV subnets. The penalty function method is used to derive a solution for all subnets. A deadlock avoidance method is embedded in the proposed methodology to ensure the feasibility and the quality of the solution. Computational results show that the proposed method with a deadlock avoidance algorithm efficiently maximizes the throughput for dynamic situations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据