4.7 Article

Time-Delay Estimation From Low-Rate Samples: A Union of Subspaces Approach

期刊

IEEE TRANSACTIONS ON SIGNAL PROCESSING
卷 58, 期 6, 页码 3017-3031

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSP.2010.2044253

关键词

Sub-Nyquist sampling; time-delay estimation; union of subspaces

资金

  1. Israel Science Foundation [1081/07]
  2. European Commission [216715]
  3. Israel Ministry of Industry and Trade

向作者/读者索取更多资源

Time-delay estimation arises in many applications in which a multipath medium has to be identified from pulses transmitted through the channel. Previous methods for time delay recovery either operate on the analog received signal, or require sampling at the Nyquist rate of the transmitted pulse. In this paper, we develop a unified approach to time delay estimation from low-rate samples. This problem can be formulated in the broader context of sampling over an infinite union of subspaces. Although sampling over unions of subspaces has been receiving growing interest, previous results either focus on unions of finite-dimensional subspaces, or finite unions. The framework we develop here leads to perfect recovery of the multipath delays from samples of the channel output at the lowest possible rate, even in the presence of overlapping transmitted pulses, and allows for a variety of different sampling methods. The sampling rate depends only on the number of multipath components and the transmission rate, but not on the bandwidth of the probing signal. This result can be viewed as a sampling theorem over an infinite union of infinite dimensional subspaces. By properly manipulating the low-rate samples, we show that the time delays can be recovered using the well-known ESPRIT algorithm. Combining results from sampling theory with those obtained in the context of direction of arrival estimation, we develop sufficient conditions on the transmitted pulse and the sampling functions in order to ensure perfect recovery of the channel parameters at the minimal possible rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据