4.7 Article

Higher Dimensional Consensus: Learning in Large-Scale Networks

期刊

IEEE TRANSACTIONS ON SIGNAL PROCESSING
卷 58, 期 5, 页码 2836-2849

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSP.2010.2042482

关键词

Distributed algorithms; higher dimensional consensus; large-scale networks; leader-follower; multiobjective optimization; Pareto optimality; spectral graph theory

资金

  1. NSF [ECS-0225449, CNS-0428404]
  2. ONR [MURI-N000140710747]

向作者/读者索取更多资源

The paper considers higher dimensional consensus (HDC). HDC is a general class of linear distributed algorithms for large-scale networks that generalizes average-consensus and includes other interesting distributed algorithms, like sensor localization, leader-follower algorithms in multiagent systems, or distributed Jacobi algorithm. In HDC, the network nodes are partitioned into anchors, nodes whose states are fixed over the HDC iterations, and sensors, nodes whose states are updated by the algorithm. The paper starts by briefly considering what we call the forward problem by presenting the conditions for HDC to converge, the limiting state to which it converges, and what is its convergence rate. The main focus of the paper is the inverse or design problem, i.e., learning the weights or parameters of the HDC so that the algorithm converges to a desired prespecified state. This generalizes the well-known problem of designing the weights in average-consensus. We pose learning as a constrained nonconvex optimization problem that we cast in the framework of multiobjective optimization (MOP) and to which we apply Pareto optimality. We derive the solution to the learning problem by proving relevant properties satisfied by the MOP solutions and by the Pareto front. Finally, the paper shows how the MOP approach leads to interesting tradeoffs (speed of convergence versus performance) arising in resource constrained networks. Simulation studies illustrate our approach for a leader-follower architecture in multiagent systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据