4.7 Article

Consensus in ad hoc WSNs with noisy links - Part II: Distributed estimation and smoothing of random signals

期刊

IEEE TRANSACTIONS ON SIGNAL PROCESSING
卷 56, 期 4, 页码 1650-1666

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSP.2007.908943

关键词

distributed estimation; Kalman smoother; nonlinear optimization; wireless sensor networks (WSNs)

向作者/读者索取更多资源

Distributed algorithms are developed for optimal estimation of stationary random signals and smoothing of (even nonstationary) dynamical processes based on generally correlated observations collected by ad hoc wireless sensor networks (WSNs). Maximum a posteriori (MAP) and linear minimum mean-square error (LMMSE) schemes, well appreciated for centralized estimation, are shown possible to reformulate for distributed operation through the iterative (alternating-direction) method of multipliers. Sensors communicate with single-hop neighbors their individual estimates as well as multipliers measuring how far local estimates are from consensus. When iterations reach consensus, the resultant distributed (D) MAP and LMMSE estimators converge to their centralized counterparts when inter-sensor communication links are ideal. The D-MAP estimators do not require the de,sired estimator to be expressible in closed form, the D-LMMSE ones are provably robust to communication or quantization noise and both are particularly simple to implement when the data model is linear-Gaussian. For decentralized tracking applications, distributed Kalman filtering and smoothing algorithms are derived for any-time MMSE optimal consensus-based state estimation using WSNs. Analysis and corroborating numerical examples, demonstrate the merits of the novel distributed estimators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据