4.7 Article

Modeling, Identification, and Control of Tendon-Based Actuation Systems

期刊

IEEE TRANSACTIONS ON ROBOTICS
卷 28, 期 2, 页码 277-290

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TRO.2011.2171610

关键词

Compliant actuation; force control; friction modeling; robotic hands; tendon transmission

类别

资金

  1. European Community as part of the IP [216239]

向作者/读者索取更多资源

In this paper, we deal with several aspects related to the control of tendon-based actuation systems for robotic devices. In particular, the problems that are considered in this paper are related to the modeling, identification, and control of tendons sliding on curved pathways, subject to friction and viscoelastic effects. Tendons made in polymeric materials are considered, and therefore, hysteresis in the transmission system characteristic must be taken into account as an additional nonlinear effect because of the plasticity and creep phenomena typical of these materials. With the aim of reproducing these behaviors, a viscoelastic model is used to model the tendon compliance. Particular attention has been given to the friction effects arising from the interaction between the tendon pathway and the tendon itself. This phenomenon has been characterized by means of a LuGre-like dynamic friction model to consider the effects that cannot be reproduced by employing a static friction model. A specific setup able to measure the tendon's tension in different points along its path has been designed in order to verify the tension distribution and identify the proper parameters. Finally, a simple control strategy for the compensation of these nonlinear effects and the control of the force that is applied by the tendon to the load is proposed and experimentally verified.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据