4.8 Article

Sequential kernel density approximation and its application to real-time visual tracking

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TPAMI.2007.70771

关键词

kernel density approximation; mean shift; mode propagation; online target appearance modeling; object tracking; real-time computer vision

向作者/读者索取更多资源

Visual features are commonly modeled with probability density functions in computer vision problems, but current methods such as a mixture of Gaussians and kernel density estimation suffer from either the lack of flexibility by fixing or limiting the number of Gaussian components in the mixture or large memory requirement by maintaining a nonparametric representation of the density. These problems are aggravated in real-time computer vision applications since density functions are required to be updated as new data becomes available. We present a novel kernel density approximation technique based on the mean-shift mode finding algorithm and describe an efficient method to sequentially propagate the density modes over time. Although the proposed density representation is memory efficient, which is typical for mixture densities, it inherits the flexibility of nonparametric methods by allowing the number of components to be variable. The accuracy and compactness of the sequential kernel density approximation technique is illustrated by both simulations and experiments. Sequential kernel density approximation is applied to online target appearance modeling for visual tracking, and its performance is demonstrated on a variety of videos.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据