4.7 Article

An Adaptive Algorithm for the Determination of the Onset and Offset of Muscle Contraction by EMG Signal Processing

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNSRE.2012.2226916

关键词

Adaptive decision threshold; electromyography (EMG) signal; maximum likelihood method; muscle contraction

资金

  1. Natural Science Foundation of China [60874035, 30901716]
  2. Fundamental Research Funds for the Central Universities [HUST: 2012QN085]

向作者/读者索取更多资源

Estimation of on-off timing of human skeletal muscles during movement is an ongoing issue in surface electromyography (sEMG) signal processing for relevant clinical applications. Widely used single threshold methods still rely on the experience of the operator to manually establish a threshold level. In this paper, a novel approach to address this issue is presented. Based on the generalized likelihood ratio test, the maximum likelihood (ML) method is improved with an adaptive threshold technique based on the signal-to-noise ratio (SNR) estimate in the initial time before accurate sEMG analyses. The dependence of optimal threshold on SNR is determined by minimizing the onset/offset estimate error on a large set of simulated signals with well-known signal parameters. Accuracy and precision of the algorithm were assessed by using a set of simulated signals and real sEMG signals recorded from two healthy subjects during elbow flexion-extension movements with and without workload. Comparison with traditional algorithms shows that with amoderate increase in the computational effort the ML algorithm performs well even for low levels of EMG activity, while the proposed adaptive method is most robust with respect to variations in SNRs. Also, we discuss the results of analyzing the sEMG recordings from the selected proximal muscles of the upper limb in two hemiparetic subjects. The detection algorithm is automatic and user-independent, managing the detection of both onset and offset activation, and is applicable in presence of noise allowing use by skilled and unskilled operators alike.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据