4.4 Article

Continuum Models Incorporating Surface Energy for Static and Dynamic Response of Nanoscale Beams

期刊

IEEE TRANSACTIONS ON NANOTECHNOLOGY
卷 9, 期 4, 页码 422-431

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNANO.2009.2034142

关键词

Mechanistic model; nanobeam; surface energy effect

向作者/读者索取更多资源

Nanoscale beams are commonly found in nanomechanical and nanoelectromechanical systems (NEMS) and other nanotechnology-based devices. Surface energy has a significant effect on nanoscale structures and is associated with their size-dependent behavior. In this paper, a general mechanistic model based on the Gurtin-Murdoch continuum theory accounting for surface energy effects is presented to analyze thick and thin nanoscale beams with an arbitrary cross section. The main contributions of this paper are a set of closed-form analytical solutions for the static response of thin and thick beams under different loading (point and uniformly distributed) and boundary conditions (simply-supported, cantilevered, and clamped ends), as well as the solution of the free vibration characteristics of such beams. Selected numerical results are presented for aluminum and silicon beams to demonstrate their salient response features. It is shown that classical beam theory is not accurate in situations where the surface residual stress and/or surface elastic constants are relatively large. An intrinsic length scale for beams is identified that depends on beam surface properties and cross-sectional shape. The present work provides a convenient set of analytical tools for researchers working on NEMS design and fabrication to understand the static and dynamic behavior of nanoscale beams including their size-dependent behavior and the effects of common boundary conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据