4.7 Article

Realistic Analytical Phantoms for Parallel Magnetic Resonance Imaging

期刊

IEEE TRANSACTIONS ON MEDICAL IMAGING
卷 31, 期 3, 页码 626-636

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMI.2011.2174158

关键词

Fourier analytical simulation; inverse crime; magnetic resonance imaging (MRI); Shepp-Logan

资金

  1. Swiss National Competence Center in Biomedical Imaging (NCCBI)

向作者/读者索取更多资源

The quantitative validation of reconstruction algorithms requires reliable data. Rasterized simulations are popular but they are tainted by an aliasing component that impacts the assessment of the performance of reconstruction. We introduce analytical simulation tools that are suited to parallel magnetic resonance imaging and allow one to build realistic phantoms. The proposed phantoms are composed of ellipses and regions with piecewise-polynomial boundaries, including spline contours, Bezier contours, and polygons. In addition, they take the channel sensitivity into account, for which we investigate two possible models. Our analytical formulations provide well-defined data in both the spatial and k-space domains. Our main contribution is the closed-form determination of the Fourier transforms that are involved. Experiments validate the proposed implementation. In a typical parallel magnetic resonance imaging reconstruction experiment, we quantify the bias in the overly optimistic results obtained with rasterized simulations-the inverse-crime situation. We provide a package that implements the different simulations and provide tools to guide the design of realistic phantoms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据