4.4 Article Proceedings Paper

Novel Gamma Differential Evolution Approach for Multiobjective Transformer Design Optimization

期刊

IEEE TRANSACTIONS ON MAGNETICS
卷 49, 期 5, 页码 2121-2124

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMAG.2013.2243134

关键词

Differential evolution; gamma distribution function; multiobjective optimization; transformer design optimization

向作者/读者索取更多资源

The differential evolution ( DE) algorithm is a simple but powerful population-based stochastic search technique for solving global optimization problems. DE consists of three main operations: mutation, crossover and selection. The advantages of DE are simple structure, ease of use, speed and robustness. However, to achieve optimal performance with DE, time consuming parameter tuning is essential as its performance is sensitive to the choice of the mutation and crossover values. In this paper, a novel DE algorithm (NDE) based on truncated gamma probability distribution function is proposed for solving multiobjective optimization problems as the design of transformers. Simulations of transformer design optimization (TDO) demonstrate the effectiveness of the proposed optimization algorithm. The simulation results show that, compared with other multiobjective DE algorithm, the proposed NDE is able to find better spread of solutions with better convergence to the Pareto front and preserve the diversity of Pareto solutions more efficiently.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Mathematics, Interdisciplinary Applications

Cooperative ensemble learning model improves electric short-term load forecasting

Matheus Henrique Dal Molin Ribeiro, Ramon Gomes da Silva, Gabriel Trierweiler Ribeiro, Viviana Cocco Mariani, Leandro dos Santos Coelho

Summary: Efficient models for short-term load forecasting in electricity distribution and generation systems are crucial for companies' energetic planning. In this study, an ensemble learning model based on dual decomposition approach, machine learning models and hyperparameters optimization is proposed. The model successfully decomposes the time series and handles the non-linearities, and achieves accurate load forecasting results with reduced errors.

CHAOS SOLITONS & FRACTALS (2023)

Article Energy & Fuels

Aggregating Prophet and Seasonal Trend Decomposition for Time Series Forecasting of Italian Electricity Spot Prices

Stefano Frizzo Stefenon, Laio Oriel Seman, Viviana Cocco Mariani, Leandro dos Santos Coelho

Summary: The cost of electricity and gas has a direct impact on people's everyday routines, but the value of electricity is closely related to spot market prices, which can increase in winter due to higher energy demand. Existing models for forecasting energy costs are not robust enough due to competition, seasonal changes, and other variables. This study proposes combining seasonal and trend decomposition using LOESS and Facebook Prophet methodologies to improve the accuracy of analyzing time series data on Italian electricity spot prices.

ENERGIES (2023)

Article Computer Science, Artificial Intelligence

Rat swarm optimizer adjusted by fuzzy inference system

Allan Christian Krainski Ferrari, Gideon Villar Leandro, Leandro dos Santos Coelho, Myriam Regattieri De Biase Silva Delgado

Summary: This work proposes a fuzzy mechanism to improve the convergence of the rat swarm optimizer algorithm. The proposed fuzzy model uses the normalized fitness and population diversity as input. The results show that the fuzzy mechanism improves convergence and is competitive with other metaheuristics.

JOURNAL OF INTELLIGENT & FUZZY SYSTEMS (2023)

Article Computer Science, Information Systems

Web pages from mockup design based on convolutional neural network and class activation mapping

Andre Armstrong Janino Cizotto, Rodrigo Clemente Thom de Souza, Viviana Cocco Mariani, Leandro dos Santos Coelho

Summary: The objective of this study is to validate the use of deep neural networks (DNNs) for segmenting and classifying web elements. A dataset of 2200 images representing 10 distinct classes was created using screenshots of real web pages. The study contributes by validating classification-only convolutional neural networks (CNNs) with the support of Class Activation Mapping (CAM), a weakly-supervised semantic segmentation technique. The best-performing model achieved a final accuracy rating of 95.71%, but improvements are still needed on the dataset and architecture for real-time dynamic web page building.

MULTIMEDIA TOOLS AND APPLICATIONS (2023)

Article Chemistry, Analytical

Optimized EWT-Seq2Seq-LSTM with Attention Mechanism to Insulators Fault Prediction

Anne Carolina Rodrigues Klaar, Stefano Frizzo Stefenon, Laio Oriel Seman, Viviana Cocco Mariani, Leandro dos Santos Coelho

Summary: Insulators installed outdoors are prone to accumulation of contaminants, causing increased conductivity and leakage current, eventually leading to flashover. To enhance power system reliability, it is possible to predict fault development and potential shutdown by evaluating the increase in leakage current. This paper proposes a method, optimized EWT-Seq2Seq-LSTM with attention, which combines empirical wavelet transform (EWT) to reduce non-representative variations and the attention mechanism with LSTM recurrent network for prediction. The model achieved a 10.17% lower mean square error (MSE) compared to standard LSTM and a 5.36% lower MSE compared to the model without optimization, demonstrating the effectiveness of the attention mechanism and hyperparameter optimization.

SENSORS (2023)

Article Chemistry, Analytical

Machine Fault Detection Using a Hybrid CNN-LSTM Attention-Based Model

Andressa Borre, Laio Oriel Seman, Eduardo Camponogara, Stefano Frizzo Stefenon, Viviana Cocco Mariani, Leandro dos Santos Coelho

Summary: In this paper, the issue of predicting electrical machine failures by predicting possible anomalies in the data is addressed through time series analysis. The dataset is used to train a hybrid CNN-LSTM architecture, which employs quantile regression to manage uncertainties in the data. The results show that this approach outperforms traditional reference models, making it beneficial for companies to optimize maintenance schedules and improve the performance of their electric machines.

SENSORS (2023)

Article Chemistry, Analytical

Video-Based Human Activity Recognition Using Deep Learning Approaches

Guilherme Augusto Silva Surek, Laio Oriel Seman, Stefano Frizzo Stefenon, Viviana Cocco Mariani, Leandro dos Santos Coelho

Summary: This paper aims to evaluate and map the current scenario of human actions in red, green, and blue videos using deep learning models. A semi-supervised learning approach is employed to evaluate a residual network (ResNet) and a vision transformer architecture (ViT). The results obtained using a bi-dimensional ViT structure demonstrated great performance in human action recognition, achieving an accuracy of 96.7% on the HMDB51 dataset.

SENSORS (2023)

Article Chemistry, Analytical

Decoding Electroencephalography Signal Response by Stacking Ensemble Learning and Adaptive Differential Evolution

Matheus Henrique Dal Molin Ribeiro, Ramon Gomes da Silva, Jose Henrique Kleinubing Larcher, Andre Mendes, Viviana Cocco Mariani, Leandro dos Santos Coelho

Summary: This paper proposes a new hybrid framework combining STACK ensemble learning and a JADE algorithm for nonlinear system identification. The model performs well in decoding EEG signals, achieving an average explanation of 94.50% and 67.50% of data variability, and outperforms other methods in terms of accuracy.

SENSORS (2023)

Article Chemistry, Analytical

Group Method of Data Handling Using Christiano-Fitzgerald Random Walk Filter for Insulator Fault Prediction

Stefano Frizzo Stefenon, Laio Oriel Seman, Nemesio Fava Sopelsa Neto, Luiz Henrique Meyer, Viviana Cocco Mariani, Leandro dos Santos Coelho

Summary: This paper presents a novel hybrid method for fault prediction based on the time series of leakage current of contaminated insulators. The proposed CFRW-GMDH method, with a root-mean-squared error of 3.44x10(-12), outperformed other models in fault prediction. This approach can provide power utilities with a reliable tool for monitoring insulator health and predicting failures, thereby enhancing the reliability of the power supply.

SENSORS (2023)

暂无数据