4.5 Article

A Dirty Model for Multiple Sparse Regression

期刊

IEEE TRANSACTIONS ON INFORMATION THEORY
卷 59, 期 12, 页码 7947-7968

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIT.2013.2280272

关键词

High-dimensional statistics; multi-task learning; multiple regression

资金

  1. NSF [0954059, 1017525]
  2. Direct For Computer & Info Scie & Enginr
  3. Division Of Computer and Network Systems [0954059] Funding Source: National Science Foundation
  4. Direct For Computer & Info Scie & Enginr
  5. Div Of Information & Intelligent Systems [1017525, 1149803] Funding Source: National Science Foundation

向作者/读者索取更多资源

The task of sparse linear regression consists of finding an unknown sparse vector from linear measurements. Solving this task even under high-dimensional settings, where the number of samples is fewer than the number of variables, is now known to be possible via methods such as the LASSO. We consider the multiple sparse linear regression problem, where the task consists of recovering several related sparse vectors at once. A simple approach to this task would involve solving independent sparse linear regression problems, but a natural question is whether one can reduce the overall number of samples required by leveraging partial sharing of the support sets, or nonzero patterns, of the signal vectors. A line of recent research has studied the use of norm block-regularizations with for such problems. However, depending on the level of sharing, these could actually perform worse in sample complexity when compared to solving each problem independently. We present a new adaptive method for multiple sparse linear regression that can leverage support and parameter overlap when it exists, but not pay a penalty when it does not. We show how to achieve this using a very simple idea: decompose the parameters into two components and regularize these differently. We show, theoretically and empirically, that our method strictly and noticeably outperforms both or methods, over the entire range of possible overlaps (except at boundary cases, where we match the best method), even under high-dimensional scaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据