4.6 Article Proceedings Paper

An All-SiC Three-Phase Buck Rectifier for High-Efficiency Data Center Power Supplies

期刊

IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS
卷 49, 期 6, 页码 2662-2673

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIA.2013.2264923

关键词

All-silicon carbide (SiC); current-source converter (CSC); high efficiency; three-phase buck rectifier

向作者/读者索取更多资源

The low power losses of silicon carbide (SiC) devices provide new opportunities to implement an ultra high-efficiency front-end rectifier for data center power supplies based on a 400-Vdc power distribution architecture, which requires high conversion efficiency in each power conversion stage. This paper presents a 7.5-kW high-efficiency three-phase buck rectifier with 480-V ac, rms input line-to-line voltage and 400-Vdc output voltage using SiC MOSFETs and Schottky diodes. To estimate power devices' losses, which are the dominant portion of total loss, the method of device evaluation and loss calculation is proposed based on a current source topology. This method simulates the current commutation process and estimates devices' losses during switching transients considering devices with and without switching actions in buck rectifier operation. Moreover, the power losses of buck rectifiers based on different combinations of 1200-V power devices are compared. The investigation and comparison demonstrate the benefits of each combination, and the lowest total loss in the all-SiC rectifier is clearly shown. A 7.5-kW prototype of the all-SiC three-phase buck rectifier using liquid cooling is fabricated and tested, with filter design and switching frequency chosen based on loss minimization. A full-load efficiency value greater than 98.5% is achieved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据