4.7 Article

Four-Component Scattering Power Decomposition With Rotation of Coherency Matrix

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2010.2099124

关键词

Coherency matrix rotation; deorientation; polarimetric synthetic aperture radar (POLSAR); radar polarimetry; scattering power decomposition

向作者/读者索取更多资源

This paper presents an improvement to a decomposition scheme for the accurate classification of polarimetric synthetic aperture radar (POLSAR) images. Using a rotation of the coherency matrix to minimize the cross-polarized component, the four-component scattering power decomposition is applied to fully polarimetric SAR images. It is known that oriented urban area and vegetation signatures are decomposed into the same volume scattering mechanism in the previous decompositions and that it is difficult to distinguish vegetation from oblique urban areas with respect to the radar direction of illumination within the volume scattering mechanism. It is desirable to distinguish these two scattering mechanisms for accurate classification although they exhibit similar polarimetric responses. The new decomposition scheme by implementing a rotation of the coherency matrix first and, subsequently, the four-component decomposition yields considerably improved accurate results that oriented urban areas are recognized as double bounce objects from volume scattering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据