3.9 Article

Comparison of Micro-Pin-Fin and Microchannel Heat Sinks Considering Thermal-Hydraulic Performance and Manufacturability

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCAPT.2009.2023980

关键词

Micro heat sink; micro-manufacturing; micromachining; pin-fin heat sink

资金

  1. National Science Foundation [CBET-0729693, CBET-0730315]

向作者/读者索取更多资源

This paper explores the potential of micro-pin-fin heat sinks as an effective alternative to microchannel heat sinks for dissipating high heat fluxes from small areas. The overall goal is to compare microchannel and micro-pin-fin heat sinks based on three metrics: thermal performance, hydraulic performance, and cost of manufacturing. The channels and pins of the microchannel and micro-pin-fin heat sinks, respectively, have a width of 200 mu m and a height of 670 mu m. A comparison of the thermal-hydraulic performance shows that the micro-pin-fin heat sink has a lower convection thermal resistance at liquid flow rates above approximately 60 g/min, though this is accompanied by a higher pressure drop. Methods that could feasibly fabricate the two heat sinks are reviewed, with references outlining current capabilities and limitations. A case study on micro-end-milling of the heat sinks is included. This paper includes equations that separate the fabrication cost into the independent variables that contribute to material cost, machining cost, and machining time. It is concluded that, with micro-end-milling, the machining time is the primary factor in determining cost, and, due to the additional machining time required, the micro-pin-fin heat sinks are roughly three times as expensive to make. It is also noted that improvements in the fabrication process, including spindle speed and tool coatings, will decrease the difference in cost.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据