4.7 Article

Bacterial foraging algorithm for optimal power flow in dynamic environments

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCSI.2008.918131

关键词

bacterial foraging algorithm (BFA); dynamic optimization; optimal power flow (OPF)

向作者/读者索取更多资源

Optimal power flow (OPF) problem has already been attempted as a static optimization problem, by adopting conventional gradient-based methods and more recently, nonconventional ones, such as evolutionary algorithms. However, as the loads, generation capacities and network connections in a power system are always in a changing status, these static-oriented methods are of limited use for this issue. This paper presents a new algorithm, dynamic bacterial foraging algorithm (DBFA), for solving an OPF problem in a dynamic environment in which system loads are changing. DBFA is based on the recently proposed BFA which mimics the basic foraging behavior of E. coli bacteria. A selection scheme for bacteria's reproduction is employed in DBFA, which explores the self-adaptability of each bacterium in the group searching activities. DBFA has been evaluated, for optimizing the power system fuel cost with the OPF embedded, on the standard IEEE 30-bus and 118-bus test systems, respectively, with a range of load changes which occurred in different probabilities. The simulation results show that DBFA can more rapidly adapt to load changes, and more closely trace the global optimum of the system fuel cost, in comparison with BFA and particle swarm optimizer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据