4.6 Article

Compression of Multidimensional Biomedical Signals With Spatial and Temporal Codebook-Excited Linear Prediction

期刊

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
卷 56, 期 11, 页码 2604-2610

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2009.2027691

关键词

EEG; electromyography (EMG); lossy compression; multichannel signals

向作者/读者索取更多资源

In this paper, we propose a model-based lossy coding technique for biomedical signals in multiple dimensions. The method is based on the codebook-excited linear prediction approach and models signals as filtered noise. The filter models short-term redundancy in time; the shape of the power spectrum of the signal and the residual noise, quantized using an algebraic code-book, is used for reconstruction of the waveforms. In addition to temporal redundancy, redundancy in the coding of the filter and residual noise across spatially related signals is also exploited, yielding better compression performance in terms of SNR for a given bit rate. The proposed coding technique was tested on sets of multichannel electromyography (EMG) and EEG signals as representative examples. For 2-D EMG recordings of 56 signals, the coding technique resulted in SNR greater than 3.4 +/- 1.3 dB with respect to independent coding of the signals in the grid when the compression ratio was 89%. For EEG recordings of 15 signals and the same compression ratio as for EMG, the average gain in SNR was 2.4 +/- 0.1 dB. In conclusion, a method for exploiting both the temporal and spatial redundancy, typical of multidimensional biomedical signals, has been proposed and proved to be superior to previous coding schemes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据