4.4 Article

Characterization of Current Stability in an HTS NMR System Energized by an HTS Flux Pump

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASC.2013.2284817

关键词

Cryogen-free; flux pump; HTS magnet stability; YBCO

向作者/读者索取更多资源

HTS magnets are operated in driven mode due to non-existent persistent joint technology. The power supply (PS) current leads place a large heat load on the system cryogenics. Applications such as nuclear magnetic resonance (NMR) require the magnet to be stable to the sub-PPM range, which necessitates an ultra-stable PS. We have investigated the use of a mechanical HTS flux pump (FP) as an alternative to the PS. The FP is integrated into the magnet's cryogenic environment and used as a current source, which significantly reduces the heat leak to the cold mass. Earlier work showed a reduction in heat load by a factor of 4.5 when using an HTS-based FP in a small cryogen-free HTS magnet. We extend the use of the FP to a 2-T NMR relaxometry magnet of substantial inductance and investigate the system's temporal stability. The 0.4-H iron-yoked dipole magnet was ramped to a field of 2 T (at 110 A) in 2.5 h. A temperature-compensated Hall sensor was used as a feedback element in a PID control loop to actively control the magnet current through modulation of the rotational speed of the FP. We report the stability achieved using proton NMR measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据