4.7 Article

On the Use of Leaky Wave Phased Arrays for the Reduction of the Grating Lobe Level

期刊

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
卷 62, 期 4, 页码 1789-1795

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TAP.2013.2272573

关键词

Frequency selective surface; leaky wave antennas (LWAs); phased array antennas; thinned arrays

向作者/读者索取更多资源

Dielectric superlayers can be used to reduce the grating lobe levels in thinned phased arrays, i.e., arrays with large periodicities. In this contribution we show how the mutual coupling impacts the active impedance and the roll-off of the embedded patterns necessary to achieve the grating lobe angular filtering in this type of arrays. The reduction of the grating lobes in the thinned array radiation pattern depends on the dielectric superlayer constant. The larger the dielectric constant the higher the attenuation of the grating lobe will be. However, this can only be obtained at the cost of an increased mutual coupling. This mutual coupling will impact on the embedded patterns reducing the actual roll-off that can be achieved. Several 11 x 11 phased arrays with different dielectric superlayers are studied in order to establish the maximum useful permittivity as a function of the mutual coupling level. We show that antenna elements based on dielectric superlayers leading to mutual coupling levels larger than -20 dB suffer from a loss of directivity in the embedded pattern and a loss of gain in the phased array because of the highly resonant active impedance. As a reference we also compare the performances of the 11 x 11 leaky wave phased array with an 11 x 11 phased array of standard conical horns. We show that an increase in the gain of more than 2.2 dB over all the frequency and scanning ranges is obtained in the leaky wave array with respect to the reference horn array. The leaky wave array leads to a reduction of the grating lobe of more than 10 dB.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据