4.6 Article

Anomalous Kink Effect in GaN High Electron Mobility Transistors

期刊

IEEE ELECTRON DEVICE LETTERS
卷 30, 期 2, 页码 100-102

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/LED.2008.2010067

关键词

AlGaN/GaN; GaN; high electron mobility transistor (HEMT); kink effect

资金

  1. EDA
  2. Italian Ministry for University and Research

向作者/读者索取更多资源

An anomalous kink effect has been observed in the room-temperature drain current I-D versus drain voltage V-DS characteristics of GaN high electron mobility transistors. The kink is originated by a buildup (at low V-DS) and subsequent release (at high V-DS) of negative charge, resulting in a shift of pinch-off voltage V-P toward more negative voltages and in a sudden increase in I-D. The kink is characterized by extremely long negative charge buildup times and by a nonmonotonic behavior as a function of photon energy under illumination. The presence of traps in the GaN buffer may explain both spectrally resolved photostimulation data and the slow negative charge buildup.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Physics, Applied

Photon-induced degradation of InGaN-based LED in open-circuit conditions investigated by steady-state photocapacitance and photoluminescence

Alessandro Caria, Carlo De Santi, Matteo Buffolo, Gaudenzio Meneghesso, Enrico Zanoni, Matteo Meneghini

Summary: The degradation of InGaN-GaN LEDs under high photon densities has been studied, revealing optically-induced processes that decrease internal quantum efficiency. Measurements show a shallow level related to defects which result in an increase in yellow luminescence.

JOURNAL OF APPLIED PHYSICS (2022)

Article Computer Science, Information Systems

Reliability of Commercial UVC LEDs: 2022 State-of-the-Art

Nicola Trivellin, Davide Fiorimonte, Francesco Piva, Matteo Buffolo, Carlo De Santi, Gaudenzio Meneghesso, Enrico Zanoni, Matteo Meneghini

Summary: This study reports on the reliability of recent commercial UVC LED devices and their efficacy in antiviral technologies for COVID-19. An in-depth analysis of four different state-of-the-art commercial LEDs suitable for disinfection applications indicates limited reliability possibly related to an increase in Shockley-Read-Hall (SRH) recombination. Suggestions for product design improvements will be proposed based on the results of this work.

ELECTRONICS (2022)

Article Chemistry, Analytical

Impact of Generation and Relocation of Defects on Optical Degradation of Multi-Quantum-Well InGaN/GaN-Based Light-Emitting Diode

Claudia Casu, Matteo Buffolo, Alessandro Caria, Carlo De Santi, Enrico Zanoni, Gaudenzio Meneghesso, Matteo Meneghini

Summary: This study investigates the defectiveness and degradation mechanisms of InGaN-based quantum wells. By designing a color-coded structure and using numerical simulations, it is found that an increase in traps in the active region is the main cause of degradation. The degradation process consists of two phases, with the first phase occurring in the quantum well closer to the p-contact. The stronger degradation in this well may be due to a lowering of injection efficiency or an increase in SRH recombination.

MICROMACHINES (2022)

Article Engineering, Electrical & Electronic

Optically Induced Degradation Due to Thermally Activated Diffusion in GaN-Based InGaN/GaN MQW Solar Cells

Marco Nicoletto, Alessandro Caria, Carlo De Santi, Matteo Buffolo, Xuanqui Huang, Houqiang Fu, Hong Chen, Yuji Zhao, Gaudenzio Meneghesso, Enrico Zanoni, Matteo Meneghini

Summary: In this article, we extensively investigate the degradation of gallium nitride (GaN)-based high periodicity indium GaN (InGaN)-GaN multiple quantum well (MQW) solar cells under optical stress at high excitation intensity and high temperature. The obtained results suggest that the degradation originates from the diffusion of hydrogen, and the proposed analytical methodology provides insight into MQW solar cell degradation.

IEEE TRANSACTIONS ON ELECTRON DEVICES (2023)

Article Physics, Applied

Modelling of impedance dispersion in lateral β-Ga2O3 MOSFETs due to parallel conductive Si-accumulation layer

Zequan Chen, Abhishek Mishra, Aditya K. Bhat, Matthew D. Smith, Michael J. Uren, Sandeep Kumar, Masataka Higashiwaki, Martin Kuball

Summary: The frequency dispersion of impedance in lateral beta-Ga2O3 MOSFETs has been studied and a model has been developed to explain the phenomenon. The dispersion is caused by the resistive and capacitive coupling between the terminal contact pads and the buried conducting layer at the unintentionally-doped epitaxy/substrate interface, which also leads to a buried parallel leakage path. It is shown that the dispersion is not related to gate dielectric traps, as commonly assumed. A generalized equivalent circuit model is proposed to explain the experimental results.

APPLIED PHYSICS EXPRESS (2023)

Article Engineering, Electrical & Electronic

Transconductance Overshoot, a New Trap-Related Effect in AlGaN/GaN HEMTs

Gao Zhan, Fabiana Rampazzo, Carlo De Santi, Mirko Fornasier, Gaudenzio Meneghesso, Matteo Meneghini, Herve Blanck, Jan Gruenenpuett, Daniel Sommer, Ding Yuan Chen, Kai-Hsin Wen, Jr-Tai Chen, Enrico Zanoni

Summary: DC characteristics of AlGaN/GaN HEMTs with different thickness values of the undoped GaN channel layer were compared. An abnormal transconductance (gm) overshoot accompanied by a negative threshold voltage (V-TH) shift was observed during IDS-V-GS sweep in devices with thinner GaN layer. At the same time, a non-monotonic increase in gate current was observed. In OFF-state, electron trapping occurs in the undoped GaN layer or at the GaN/AlN interface, leading to a positive VTH shift. When the device is turning on at a sufficiently high V-DS, electron de-trapping occurs due to trap impact-ionization; consequently, V-TH and therefore ID suddenly recovers, leading to the gm overshoot effect. These effects are attributed to electron trap impact-ionization and consequent modulation of the device's electric field.

IEEE TRANSACTIONS ON ELECTRON DEVICES (2023)

Article Materials Science, Multidisciplinary

Performance and Degradation of Commercial Ultraviolet-C Light-Emitting Diodes for Disinfection Purposes

Nicola Trivellin, Francesco Piva, Davide Fiorimonte, Matteo Buffolo, Carlo De Santi, Enrico Zanoni, Gaudenzio Meneghesso, Matteo Meneghini

Summary: This study reports on the reliability of commercial ultraviolet-C (UV-C) light-emitting diodes (LEDs) under constant current stress. Electrical, optical, and spectral analyses were conducted on UV-C LEDs with a peak emission at 275 nm and a nominal power of 12 mW at 100 mA. Degradation tests were performed at maximum rated current, double the maximum, and three times the maximum. The results show that LED lifetime is inversely proportional to the stress current density, potentially due to high-energy electrons from Auger-Meitner recombination.

PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE (2023)

Article Engineering, Electrical & Electronic

AlGaN/GaN superlattice-based multichannel RF transistors for high linearity and reliability: a simplified simulation approach

Akhil S. Kumar, Michael J. Uren, Justin Parke, H. George Henry, Robert S. Howell, Martin Kuball

Summary: Multichannel RF power amplifiers provide high frequency operation, high current and RF power, and excellent linearity. By using 3D and 2D simulations, the impact of device architecture on linearity and off-state reliability can be investigated, leading to an improved linear design without compromising reliability. Linearity is assessed using a 2D approximation which is computationally efficient, while off-state reliability is evaluated using a full 3D simulation to measure peak electric field. The study suggests that introducing channel number-dependent doping can enhance transconductance-linearity, and increasing gate dielectric thickness or fin width leads to a strong increase in third order intercept, while maintaining reliability requires increased fin height to reduce electric field.

SEMICONDUCTOR SCIENCE AND TECHNOLOGY (2023)

Article Engineering, Electrical & Electronic

Degradation of GaN-Based Multiple Quantum Wells Solar Cells Under Forward Bias: Investigation Based on Optical Measurements and Steady-State Photocapacitance

Alessandro Caria, Carlo De Santi, Matteo Buffolo, Marco Nicoletto, Xuanqi Huang, Houqiang Fu, Hong Chen, Yuji Zhao, Gaudenzio Meneghesso, Enrico Zanoni, Matteo Meneghini

Summary: The aim of this article is to investigate the degradation mechanisms of GaN solar cells under harsh conditions, specifically forward current stress. The results indicate that the main parameters of the cells decrease under this stress, and there is a correlation between the charge distribution inside the active region and the concentration of trap states. The decrease in power conversion efficiency is attributed to a redistribution of charge in the active region, resulting in an increase in midgap states density. These findings fill the gap in the literature regarding the long-term reliability of GaN solar cells under harsh conditions.

IEEE TRANSACTIONS ON ELECTRON DEVICES (2023)

Editorial Material Materials Science, Multidisciplinary

Nitride Semiconductors

Michael Kneissl, Juergen Christen, Axel Hoffmann, Bo Monemar, Tim Wernicke, Ulrich Schwarz, Asa Haglund, Matteo Meneghini

PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE (2023)

Article Engineering, Electrical & Electronic

On the CET-Map Ill-Posed Inversion Problem: Theory and Application to GaN HEMTs

Nicola Modolo, Carlo De Santi, Giulio Baratella, Andrea Minetto, Luca Sayadi, Sebastien Sicre, Gerhard Prechtl, Gaudenzio Meneghesso, Enrico Zanoni, Matteo Meneghini

Summary: Ideally, the emission profile in semiconductors should follow a pure exponential decay, but complex devices often exhibit a strongly stretched exponential shape. Conventional methodologies for mapping capture/emission time constants may lead to inaccuracies. In this article, a new methodology based on the double inverse Laplace transform is introduced to accurately extract the capture-emission time map of defects. The proposed approach is compared with conventional approximations, providing insight into the accuracy of simplified methods. The method is tested on custom-generated functions and successfully applied to extract the capture/emission time map from a power GaN HEMT subjected to positive bias instability test.

IEEE TRANSACTIONS ON ELECTRON DEVICES (2023)

Article Computer Science, Information Systems

Lifetime Prediction of Current-and Temperature-Induced Degradation in Silicone-Encapsulated 365 nm High-Power Light-Emitting Diodes

Alexander Herzog, Simon Benkner, Babak Zandi, Matteo Buffolo, Willem D. Van Driel, Matteo Meneghini, Tran Quoc Khanh

Summary: This study reports on the degradation mechanisms and dynamics of silicone encapsulated high-power ultraviolet A (UV-A) light-emitting diodes (LEDs) with a peak wavelength of 365 nm. Stress tests were conducted for 8665 hours at forward currents ranging from 350 mA to 700 mA and junction temperatures up to 132 degrees C. The results showed a significant decrease in optical power, with faster degradation at higher operating conditions. The degradation mechanisms were analyzed, and a degradation model was proposed to estimate the device lifetime under different operating parameters. Additional stress test data was used to validate the accuracy of the model's lifetime predictions.

IEEE ACCESS (2023)

暂无数据