4.6 Article

Linking tagging technology and molecular genetics to gain insight in the spatial dynamics of two stocks of cod in Northeast Atlantic waters

期刊

ICES JOURNAL OF MARINE SCIENCE
卷 71, 期 6, 页码 1417-1432

出版社

OXFORD UNIV PRESS
DOI: 10.1093/icesjms/fsu083

关键词

behaviour; data storage tags (DST); distribution; environmental conditions; fishery management; identification of cod types; molecular genetics; Northeast Arctic cod; Norwegian Coastal Cod

资金

  1. EU [Q5RT-2002-00813]

向作者/读者索取更多资源

The Northeast Arctic cod (Gadus morhua L.: NEAC) remains the most abundant cod stock in the North Atlantic, while the catches of the partially co-occurring Norwegian coastal cod (NCC) stocks have dramatically decreased in recent years. To ensure effective management of the two stocks, it is necessary to know if the population genetic structure is associated with any pattern in the spatial dynamics or whether it is affected by any distinct environmental factors. By combining information from electronic data storage tags (DST) and molecular genetics methods with statistical tools, we have been able to associate spatial dynamics and distinct environmental factors to the two cod stocks. In general, adult NEAC migrate between deep, warm overwintering grounds and shallow summer feeding grounds where water temperatures maybe low. In contrast, NCC do not undertake large-scale seasonal migrations, show little seasonal variation in depth distribution, and experience the opposite seasonal change in temperature compared with NEAC. However, within the NCC group, some individuals did conduct longer horizontal movements than others. Even though the distances calculated in this study represent the shortest distance between release and recapture positions, they are far higher than previously reported by NCC. Distinctive depth profiles indicate that this migrant NCC have moved out of the area, passing the deep trenches outside Lofoten while more stationary NCC occupies shallower depths throughout the year. The temperature profiles also indicate that migrant and stationary NCC has occupied different areas during the year. We demonstrate that the combination of information from DSTs and molecular genetics offers a deeper understanding of individual cod behaviour, provides an insight in the spatial dynamics of the species, and ultimately, improves the scientific basis for management of a complex mixed fishery of Atlantic cod.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据