4.5 Article

Optical constants of Titan's stratospheric aerosols in the 70-1500 cm-1 spectral range constrained by Cassini/CIRS observations

期刊

ICARUS
卷 219, 期 1, 页码 5-12

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.icarus.2012.02.009

关键词

Titan, atmosphere; Atmospheres, composition; Spectroscopy

资金

  1. NASA Postdoctoral Program at the NASA Goddard Space Flight Center
  2. Centre National d'Etudes Spatiales
  3. Programme National de Planetologie (INSU)

向作者/读者索取更多资源

We utilized aerosol extinction coefficient inferred from Cassini/CIRS spectra in the far and mid infrared region to derive the extinction cross-section near an altitude of 190 km at 15 degrees S (from far-IR) and 20 degrees S (from mid-IR). By comparing the extinction cross section that are derived from observations with theoretical calculations for a fractal aggregate of 3000 monomers, each having a radius of 0.05 pm, and a fractal dimension of 2, we are able to constrain the refractive index of Titan's aerosol between 70 and 1500 cm(-1) (143 and 6.7 mu m). As the real and imaginary parts of the refractive index are related by the Kramers-Kronig equation, we apply an iterative process to determine the optical constants in the thermal infrared. The resulting spectral dependence of the imaginary index displays several spectral signatures, some of which are also seen for some Titan's aerosol analogues (tholins) produced in laboratory experiments. We find that Titan's aerosols are less absorbent than tholins in the thermal infrared. The most prominent emission bands observed in the mid-infrared are due to C-H bending vibrations in methyl and methylene groups. It appears that Titan's aerosols predominantly display vibrations implying carbon and hydrogen atoms and perhaps marginally nitrogen. In the mid infrared, all the aerosol spectral signatures are observed at three additional latitudes (56 degrees S, 5 degrees N and 30 degrees N) and in the 193-274 km altitude range, which implies that Titan's aerosols exhibit the same chemical composition in all investigated latitude and altitude regions. (c) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据