4.5 Article

Magnitude of global contraction on Mars from analysis of surface faults: Implications for martian thermal history

期刊

ICARUS
卷 211, 期 1, 页码 389-400

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.icarus.2010.11.003

关键词

Tectonics; Thermal histories; Mars, Surface

资金

  1. NASA

向作者/读者索取更多资源

Faults provide a record of a planet's crustal stress state and interior dynamics, including volumetric changes related to long-term cooling. Previous work has suggested that Mars experienced a pulse of large-scale global contraction during Hesperian time. Here we evaluate the evidence for martian global contraction using a recent compilation of thrust faults. Fault-related strains were calculated for wrinkle ridges and lobate scarps to provide lower and upper bounds, respectively, on the magnitude of global contraction from contractional structures observed on the surface of Mars. During the hypothesized pulse of global contraction, contractional strain of -0.007% to -0.13% is indicated by the structures, corresponding to decreases in planetary radius of 112 m to 2.24 km, respectively. By contrast, consideration of all recognized thrust faults regardless of age produces a globally averaged contractional strain of -0.011% to -0.22%, corresponding to a radius decrease of 188 m to 3.77 km since the Early Noachian. The amount of global contraction predicted by thermal models is larger than what is recorded by the faults at the surface, paralleling similar studies for Mercury and the Moon, which suggests that observations of fault populations at the surface may provide tighter bounds on planetary thermal evolution than models alone. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据